17 research outputs found

    Determination of deposited flux and energy of sputtered tungsten atoms on every stages of transport in HiPIMS discharge

    Get PDF
    International audienceA time-resolved tunable diode-laser (DL) induced fluorescence (TR-TDLIF) technique has been used to identify different populations of atoms (on different stages of transport) to determine their corresponding deposited energy and flux. The temporal dimension permits the splitting of the processes of sputtering during the discharge and particles transport in the post-discharge where atoms and flux velocity distribution functions (AVDF, FVDF) of each population were measured varying the discharge parameters (power, voltage, pressure, and distance from target). Tungsten (W) was chosen, being an interesting case in terms of sputtered atom transport, considering its weight which implies weak changes of directivity or energy transfer after collisions with the buffer gas. The high temporal and spectral resolutions of TR-TDLIF are the keys for the distinction of the atoms populations and the stage corresponding to the transition from the ballistic to diffusive regime of transport was observed for the first time and named quasi-diffusive regime. Thus, the ability to dissociate populations of atoms and to determine their deposited flux and energy may be of great interest to adjust film properties as desired for applications

    Cluster Agglomeration Induced by Dust-Density Waves in Complex Plasmas

    Get PDF
    International audienc

    Etude expérimentale d'une source plasma RF à configuration hélicon dans le mélange Ar/H2 (application à la gravure chimique de surfaces graphitiques dans le cadre des interactions plasma-paroi du divertor d'ITER)

    No full text
    Les interactions plasma-paroi représentent l'un des principaux problèmes à résoudre pour avancer dans la recherche sur la fusion contrôlée. Ce travail de thèse a pour objectif de développer une source d'hydrogène atomique à basse pression (< Torr) dans un réacteur à configuration hélicon en mélange H2/Ar pour étudier la gravure chimique du graphite et de composites à fibres de carbone utilisés dans le tokamak Tore Supra. Selon les conditions expérimentales, le réacteur peut générer les modes de couplages capacitif, inductif, Trivelpiece-Gould et hélicon à bas champ. Leur caractérisation a montré que le mode inductif est, dans ce cas, celui présentant le plus grand intérêt pour la source d'hydrogène atomique. Les études en mode inductif ont révélé un phénomène de décroissance de la densité relative de deux niveaux métastables de l'ion Ar+ et d'un niveau métastable de l'argon neutre lors de l'augmentation du champ magnétique de confinement. Un modèle simple a confirmé que ces niveaux métastables sont détruits par collisions électroniques vers des niveaux de plus grande énergie. La gravure du graphite par la source d'hydrogène atomique est relativement efficace (jusqu'à 3 m/h) à 10 mTorr et diminue avec la pression. Une analyse qualitative de la cinétique de l'hydrogène atomique a permis de conclure que cette baisse de la vitesse de gravure est due au flux d'hydrogène atomique arrivant sur l'échantillon qui décroît lorsque la pression augmente. Les premières observations de la surface après gravure ont mis en évidence la présence de structures carbonées (agglomérats de nanoparticules et dépôts). Ces structures ressemblent à celles observées dans différents tokamaksPlasma-wall interactions are one of the main issues in fusion research and must be thoroughly studied to progress in this topic. The objective of this work is to develop an atomic hydrogen source at low pressure (< Torr) in a helicon configuration reactor working in H2/Ar gas mixture. This source is then used to study the chemical etching of graphite and carbon fiber composites composing the limiter of the Tore Supra tokamak. Depending on the experimental conditions, the RF power coupling of the reactor can be in capacitive, inductive, Trivelpiece-Gould or low field helicon mode. The characterization of these modes determined that in this case the inductive one presents the greatest interest for the atomic hydrogen source. Further studies in inductive mode showed that increasing the confinement magnetic field leads to a decrease of measured relative densities of two metastable levels of argon ion and one metastable state of neutral argon. A simple model simulating neutral metastable state behavior confirmed that these levels are destroyed by electronic collisions towards upper levels. The chemical etching of graphite exposed to the atomic hydrogen source is relatively efficient (up to 3 m/h) at 10 mTorr and drops with the pressure. A qualitative analysis of atomic hydrogen kinetics concluded that this behavior is due to the decrease of atomic hydrogen flux on the sample with increasing pressure. Finally, first observations of the etched surface underlined different structures (nanoparticles clusters and deposits). These can be compared to the ones observed in different tokamaksMETZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Characterization of energetic and thermalized sputtered tungsten atoms using tuneable diode-laser induced fluorescence in direct current magnetron discharge

    Get PDF
    International audienceIn this study a tuneable diode-laser induced fluorescence (TD-LIF) technique (lambda(0) = 407.4358 nm) is used to determine the atoms' velocity distribution function (AVDF) of energetic and thermalized sputtered tungsten (W) atoms in direct current magnetron discharge. The AVDF is characterized by probing the plasma above the centre of the target racetrack along the magnetron cathode axis in an argon-helium (Ar-He) mixture. Quantitative absorption measurements corroborated by deposition on silicon substrates are used to calibrate the TD-LIF relative measurements. Density, flux, temperature, AVDF and the flux velocity distribution function are derived from fitting the TD-LIF signals with four Gaussians (thermalized atoms) and four (energetic atom) functions (Stepanova and Dew 2004 Nucl. Instrum. Methods Phys. Res. B 215 357) taking into account the natural abundance and resonance wavelength shifts of the four main isotopes. Measurements show transport improvement for W atoms and an increase of the ratio of Ar ions to Ar neutrals with the increase of the percentage of He. All measurements are performed at 0.4 Pa and 100 W. The mean velocity of energetic W atoms typically ranges from 1900 to 2200 m s(-1). The densities of thermalized and energetic atoms are in the same order of magnitude (similar to 10(9) cm(-3)) and their corresponding fluxes are several tens of times higher for energetic atoms (similar to 10(15) cm(-2) s(-1))

    Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    Get PDF
    International audienceA new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40 degrees. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs

    Characterization of energetic and thermalized sputtered atoms in pulsed plasma using time-resolved tunable diode-laser induced fluorescence

    No full text
    International audienceIn this work, a time-resolved tunable diode-laser (DL) induced fluorescence (TR-TDLIF) method calibrated by absorption spectroscopy has been developed in order to determine atom and flux velocity distribution functions (AVDF and FVDF) of the energetic and the thermalized atoms in pulsed plasmas. The experimental set-up includes a low-frequency (similar to 3 Hz) and high spectral-resolution DL (similar to 0.005 pm), a fast rise-time pulse generator, and a high power impulse magnetron sputtering (HiPIMS) system. The induced TR-TDLIF signal is recorded every 0.5 mu s with a digital oscilloscope of a second-long trace. The technique is illustrated with determining the AVDF and the FVDF of a metastable state of the sputtered neutral tungsten atoms in the HiPIMS post-discharge. Gaussian functions describing the population of the four W isotopes were used to fit the measured TR-TDLIF signal. These distribution functions provide insight into transition from the energetic to thermalized regimes from the discharge onset. This technique may be extended with appropriate DLs to probe any species with rapidly changing AVDF and FVDF in pulsed and strongly oscillating plasmas

    Ti-Ar scattering cross sections by direct comparison of Monte Carlo simulations and laser-induced fluorescence spectroscopy in magnetron discharges

    No full text
    International audienceA 3D Monte Carlo code (OMEGA) was developed to simulate the transport of sputtered atoms in a magnetron discharge operating in direct current mode. Collisions between the sputtered Ti atoms and the neutral process gas atoms (Ar) were modelled. Spatially resolved simulated velocity distributions of the sputtered particles parallel as well as perpendicular to the cathode surface for different operating pressures were recorded and benchmarked against experimentally obtained profiles using laser-induced fluorescence. New differential (angular and energy-dependent) cross sections for Ti-Ar elastic collisions were thereby obtained, which resulted in good agreement between modelled and experimental results. The differences with respect to commonly used extrapolated Ar-Ar cross sections to describe the Ti-Ar interaction are highlighted and discussed

    Plasma synthesis of hexagonal-pyramidal graphite hillocks

    No full text
    International audienceWe report on the synthesis and natural occurrence of hexagonal-pyramidal graphite hillocks on graphite crystal substrates. Synthetic hillocks were obtained from flexible graphite sheets and highly oriented pyrolytic graphite via argon plasma etching in a standard helicon configuration reactor. High-resolution transmission electron microscopy and electron diffraction suggest these hillocks have a high degree of perfection. Their size distribution ranges from 50 to 800 nm across and up to 1 mu m along the c-axis. As a reference, natural crystals from Tanzania exhibiting the same morphology are presented. Also, a formation mechanism of the plasma-synthesized structures by an etching process is detailed. This new type of vertically aligned carbon nano- and microstructures presents a peculiar geometry including nano-arches at the graphite edge planes which induce a strong resistance to the plasma etching

    Agglomeration processes sustained by dust density waves in Ar/C2H2 plasma: From C2H2 injection to the formation of an organized structure

    No full text
    International audienceIn this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis. [http://dx.doi.org/10.1063/1.4796047
    corecore