5 research outputs found
Influence of Modeling Errors on the Initial Estimate for Nonlinear Myocardial Activation Times Imaging Calculated With Fastest Route Algorithm
Noninvasive reconstruction of cardiac electrical activity has a great potential to support clinical decision making, planning, and treatment. Recently, significant progress has been made in the estimation of the cardiac activation from body surface potential maps (BSPMs) using boundary element method (BEM) with the equivalent double layer (EDL) as a source model. In this formulation, noninvasive assessment of activation times results in a nonlinear optimization problem with an initial estimate calculated with the fastest route algorithm (FRA). Each FRA-simulated activation sequence is converted into the ECG. The best initialization is determined by the sequence providing the highest correlation between predicted and measured potentials. We quantitatively assess the effects of the forward modeling errors on the FRA-based initialization. We present three simulation setups to investigate the effects of volume conductor model simplifications, neglecting the cardiac anisotropy and geometrical errors on the localization of ectopic beats starting on the ventricular surface. For the analysis, 12-lead ECG and 99 electrodes BSPM system were used. The areas in the heart exposing the largest localization errors were volume conductor model and electrode configuration specific with an average error <10 mm. The results show the robustness of the FRA-based initialization with respect to the considered modeling errors
Experimental Data and Geometric Analysis Repository-EDGAR
Item does not contain fulltextINTRODUCTION: The "Experimental Data and Geometric Analysis Repository", or EDGAR is an Internet-based archive of curated data that are freely distributed to the international research community for the application and validation of electrocardiographic imaging (ECGI) techniques. The EDGAR project is a collaborative effort by the Consortium for ECG Imaging (CEI, ecg-imaging.org), and focused on two specific aims. One aim is to host an online repository that provides access to a wide spectrum of data, and the second aim is to provide a standard information format for the exchange of these diverse datasets. METHODS: The EDGAR system is composed of two interrelated components: 1) a metadata model, which includes a set of descriptive parameters and information, time signals from both the cardiac source and body-surface, and extensive geometric information, including images, geometric models, and measure locations used during the data acquisition/generation; and 2) a web interface. This web interface provides efficient, search, browsing, and retrieval of data from the repository. RESULTS: An aggregation of experimental, clinical and simulation data from various centers is being made available through the EDGAR project including experimental data from animal studies provided by the University of Utah (USA), clinical data from multiple human subjects provided by the Charles University Hospital (Czech Republic), and computer simulation data provided by the Karlsruhe Institute of Technology (Germany). CONCLUSIONS: It is our hope that EDGAR will serve as a communal forum for sharing and distribution of cardiac electrophysiology data and geometric models for use in ECGI research
ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone
ECG imaging is an emerging technology for the reconstruction of cardiac electric activity from non-invasively measured body surface potential maps. In this case report, we present the first evaluation of transmurally imaged activation times against endocardially reconstructed isochrones for a case of sustained monomorphic ventricular tachycardia (VT). Computer models of the thorax and whole heart were produced from MR images. A recently published approach was applied to facilitate electrode localization in the catheter laboratory, which allows for the acquisition of body surface potential maps while performing non-contact mapping for the reconstruction of local activation times. ECG imaging was then realized using Tikhonov regularization with spatio-temporal smoothing as proposed by Huiskamp and Greensite and further with the spline-based approach by Erem et al. Activation times were computed from transmurally reconstructed transmembrane voltages. The results showed good qualitative agreement between the non-invasively and invasively reconstructed activation times. Also, low amplitudes in the imaged transmembrane voltages were found to correlate with volumes of scar and grey zone in delayed gadolinium enhancement cardiac MR. The study underlines the ability of ECG imaging to produce activation times of ventricular electric activity—and to represent effects of scar tissue in the imaged transmembrane voltages