1,906 research outputs found

    Phase Structure of Z(3)-Polyakov-Loop Models

    Get PDF
    We study effective lattice actions describing the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. Starting with a strong-coupling expansion the effective action is obtained as a series of Z(3)-invariant operators involving higher and higher powers of the Polyakov loop, each with its own coupling. Truncating to a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches concerning the phase structure of the theories. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and anti-ferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents nu and gamma at the continuous transition between symmetric and anti-ferromagnetic phases are the same as for the 3-state Potts model.Comment: 20 pages, 22 figure

    Seeking Sustainability: COSA preliminary analysis of sustainability initiatives in the coffee sector

    Get PDF
    The growing economic value and consumer popularity of sustainability standards inevitably raise questions about the extent to which their structure and dynamics actually address many environmental, economic and public welfare issues. The Committee on Sustainable Assessment (COSA) was formed, in part, to develop a scientifically credible framework capable of assessing the impacts associated with the adoption of sustainability initiatives. This paper examines the pilot phase of vetting and testing the COSA method, an innovative management tool used to gather and analyze data using economic, environmental and social metrics.sustainability initiatives, standards, organic, fair trade, Rainforest, social, environmental, economic certification

    Application of exchange Monte Carlo method to ordering dynamics

    Full text link
    We apply the exchange Monte Carlo method to the ordering dynamics of the three-state Potts model with the conserved order parameter. Even for the deeply quenched case to low temperatures, we have observed a rapid domain growth; we have proved the efficiency of the exchange Monte Carlo method for the ordering process. The late-stage growth law has been found to be R(t)t1/3R(t) \sim t^{1/3} for the case of conserved order parameter of three-component system.Comment: 7 pages including 5 eps figures, to appear in New J. Phys. http://www.njp.or

    Monte Carlo Study of an Extended 3-State Potts Model on the Triangular Lattice

    Full text link
    By introducing a chiral term into the Hamiltonian of the 3-state Potts model on a triangular lattice additional symmetries are achieved between the clockwise and anticlockwise states and the ferromagnetic state. This model is investigated using Monte Carlo methods. We investigate the full phase diagram and find evidence for a line tricritical points separating the ferromagnetic and antiferromagnetic phases.Comment: 6 pages, 10 figure

    Dynamic critical behavior of the Chayes-Machta-Swendsen-Wang algorithm

    Get PDF
    We study the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts model to noninteger q, in two and three spatial dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z \ge \alpha/\nu is close to but probably not sharp in d=2, and is far from sharp in d=3, for all q. The conjecture z \ge \beta/\nu is false (for some values of q) in both d=2 and d=3.Comment: Revtex4, 4 pages including 4 figure

    Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm

    Full text link
    We apply a newly proposed Monte Carlo method, the Wang-Landau algorithm, to the study of the three-dimensional antiferromagnetic q-state Potts models on a simple cubic lattice. We systematically study the phase transition of the models with q=3, 4, 5 and 6. We obtain the finite-temperature phase transition for q= 3 and 4, whereas the transition temperature is down to zero for q=5. For q=6 there exists no order for all the temperatures. We also study the ground-state properties. The size-dependence of the ground-state entropy is investigated. We find that the ground-state entropy is larger than the contribution from the typical configurations of the broken-sublattice-symmetry state for q=3. The same situations are found for q = 4, 5 and 6.Comment: 9 pages including 9 eps figures, RevTeX, to appear in J. Phys.

    On the de Haas-van Alphen effect in inhomogeneous alloys

    Full text link
    We show that Landau level broadening in alloys occurs naturally as a consequence of random variations in the local quasiparticle density, without the need to consider a relaxation time. This approach predicts Lorentzian-broadened Landau levels similar to those derived by Dingle using the relaxation-time approximation. However, rather than being determined by a finite relaxation time τ\tau, the Landau-level widths instead depend directly on the rate at which the de Haas-van Alphen frequency changes with alloy composition. The results are in good agreement with recent data from three very different alloy systems.Comment: 5 pages, no figure

    Large-qq expansion of the specific heat for the two-dimensional qq-state Potts model

    Get PDF
    We have calculated the large-qq expansion for the specific heat at the phase transition point in the two-dimensional qq-state Potts model to the 23rd order in 1/q1/\sqrt{q} using the finite lattice method. The obtained series allows us to give highly convergent estimates of the specific heat for q>4q>4 on the first order transition point. The result confirm us the correctness of the conjecture by Bhattacharya et al. on the asymptotic behavior of the specific heat for q4+q \to 4_+.Comment: 7 pages, LaTeX, 2 postscript figure

    Long‐term trends in fruit production in a tropical forest at Ngogo, Kibale National Park, Uganda

    Full text link
    Fruit production in tropical forests varies considerably in space and time, with important implications for frugivorous consumers. Characterizing temporal variation in forest productivity is thus critical for understanding adaptations of tropical forest frugivores, yet long‐term phenology data from the tropics, in particular from African forests, are still scarce. Similarly, as the abiotic factors driving phenology in the tropics are predicted to change with a warming climate, studies documenting the relationship between climatic variables and fruit production are increasingly important. Here, we present data from 19 years of monitoring the phenology of 20 tree species at Ngogo in Kibale National Park, Uganda. Our aims were to characterize short‐ and long‐term trends in productivity and to understand the abiotic factors driving temporal variability in fruit production. Short‐term (month‐to‐month) variability in fruiting was relatively low at Ngogo, and overall fruit production increased significantly through the first half of the study. Among the abiotic variables, we expected to influence phenology patterns (including rainfall, solar irradiance, and average temperature), only average temperature was a significant predictor of monthly fruit production. We discuss these findings as they relate to the resource base of the frugivorous vertebrate community inhabiting Ngogo.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155479/1/btp12764.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155479/2/btp12764_am.pd
    corecore