1,002 research outputs found
Recursive Neural Networks Can Learn Logical Semantics
Tree-structured recursive neural networks (TreeRNNs) for sentence meaning
have been successful for many applications, but it remains an open question
whether the fixed-length representations that they learn can support tasks as
demanding as logical deduction. We pursue this question by evaluating whether
two such models---plain TreeRNNs and tree-structured neural tensor networks
(TreeRNTNs)---can correctly learn to identify logical relationships such as
entailment and contradiction using these representations. In our first set of
experiments, we generate artificial data from a logical grammar and use it to
evaluate the models' ability to learn to handle basic relational reasoning,
recursive structures, and quantification. We then evaluate the models on the
more natural SICK challenge data. Both models perform competitively on the SICK
data and generalize well in all three experiments on simulated data, suggesting
that they can learn suitable representations for logical inference in natural
language
Learning to Generate Compositional Color Descriptions
The production of color language is essential for grounded language
generation. Color descriptions have many challenging properties: they can be
vague, compositionally complex, and denotationally rich. We present an
effective approach to generating color descriptions using recurrent neural
networks and a Fourier-transformed color representation. Our model outperforms
previous work on a conditional language modeling task over a large corpus of
naturalistic color descriptions. In addition, probing the model's output
reveals that it can accurately produce not only basic color terms but also
descriptors with non-convex denotations ("greenish"), bare modifiers ("bright",
"dull"), and compositional phrases ("faded teal") not seen in training.Comment: 6 pages, 4 figures, 3 tables. EMNLP 201
Linguistic Optimization
Optimality Theory (OT) is a model of language that combines aspects of generative and connectionist linguistics. It is unique in the field in its use of a rank ordering on constraints, which is used to formalize optimization, the choice of the best of a set of potential linguistic forms. We show that phenomena argued to require ranking fall out equally from the form of optimization in OT's predecessor Harmonic Grammar (HG), which uses numerical weights to encode the relative strength of constraints. We further argue that the known problems for HG can be resolved by adopting assumptions about the nature of constraints that have precedents both in OT and elsewhere in computational and generative linguistics. This leads to a formal proof that if the range of each constraint is a bounded number of violations, HG generates a finite number of languages. This is nontrivial, since the set of possible weights for each constraint is nondenumerably infinite. We also briefly review some advantages of HG
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding
natural language, and inference about entailment and contradiction is a
valuable testing ground for the development of semantic representations.
However, machine learning research in this area has been dramatically limited
by the lack of large-scale resources. To address this, we introduce the
Stanford Natural Language Inference corpus, a new, freely available collection
of labeled sentence pairs, written by humans doing a novel grounded task based
on image captioning. At 570K pairs, it is two orders of magnitude larger than
all other resources of its type. This increase in scale allows lexicalized
classifiers to outperform some sophisticated existing entailment models, and it
allows a neural network-based model to perform competitively on natural
language inference benchmarks for the first time.Comment: To appear at EMNLP 2015. The data will be posted shortly before the
conference (the week of 14 Sep) at http://nlp.stanford.edu/projects/snli
- …
