1,002 research outputs found

    Recursive Neural Networks Can Learn Logical Semantics

    Full text link
    Tree-structured recursive neural networks (TreeRNNs) for sentence meaning have been successful for many applications, but it remains an open question whether the fixed-length representations that they learn can support tasks as demanding as logical deduction. We pursue this question by evaluating whether two such models---plain TreeRNNs and tree-structured neural tensor networks (TreeRNTNs)---can correctly learn to identify logical relationships such as entailment and contradiction using these representations. In our first set of experiments, we generate artificial data from a logical grammar and use it to evaluate the models' ability to learn to handle basic relational reasoning, recursive structures, and quantification. We then evaluate the models on the more natural SICK challenge data. Both models perform competitively on the SICK data and generalize well in all three experiments on simulated data, suggesting that they can learn suitable representations for logical inference in natural language

    Learning to Generate Compositional Color Descriptions

    Full text link
    The production of color language is essential for grounded language generation. Color descriptions have many challenging properties: they can be vague, compositionally complex, and denotationally rich. We present an effective approach to generating color descriptions using recurrent neural networks and a Fourier-transformed color representation. Our model outperforms previous work on a conditional language modeling task over a large corpus of naturalistic color descriptions. In addition, probing the model's output reveals that it can accurately produce not only basic color terms but also descriptors with non-convex denotations ("greenish"), bare modifiers ("bright", "dull"), and compositional phrases ("faded teal") not seen in training.Comment: 6 pages, 4 figures, 3 tables. EMNLP 201

    Linguistic Optimization

    Get PDF
    Optimality Theory (OT) is a model of language that combines aspects of generative and connectionist linguistics. It is unique in the field in its use of a rank ordering on constraints, which is used to formalize optimization, the choice of the best of a set of potential linguistic forms. We show that phenomena argued to require ranking fall out equally from the form of optimization in OT's predecessor Harmonic Grammar (HG), which uses numerical weights to encode the relative strength of constraints. We further argue that the known problems for HG can be resolved by adopting assumptions about the nature of constraints that have precedents both in OT and elsewhere in computational and generative linguistics. This leads to a formal proof that if the range of each constraint is a bounded number of violations, HG generates a finite number of languages. This is nontrivial, since the set of possible weights for each constraint is nondenumerably infinite. We also briefly review some advantages of HG

    A large annotated corpus for learning natural language inference

    Full text link
    Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.Comment: To appear at EMNLP 2015. The data will be posted shortly before the conference (the week of 14 Sep) at http://nlp.stanford.edu/projects/snli
    corecore