1,248 research outputs found
Variational cluster approach to correlated electron systems in low dimensions
A self-energy-functional approach is applied to construct cluster
approximations for correlated lattice models. It turns out that the
cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the
cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are
limiting cases of a more general cluster method. Results for the
one-dimensional Hubbard model are discussed with regard to boundary conditions,
bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change
Correlation and surface effects in Vanadium Oxides
Recent photoemission experiments have shown strong surface modifications in
the spectra from vanadium oxides as (V,Cr)_2O_3 or
(Sr,Ca)VO_3. The effective mass is enhanced at the surface and the coherent
part of the surface spectrum is narrowed as compared to the bulk. The
quasiparticle weight is more sensitive at the surface than in the bulk against
bandwidth variations. We investigate these effects theoretically considering
the single-band Hubbard model for a film geometry. A simplified dynamical
mean-field scheme is used to calculate the main features of the interacting
layer-dependent spectral function. It turns out that the experimentally
confirmed effects are inherent properties of a system of strongly correlated
electrons. The reduction of the weight and the variance of the coherent part of
the surface spectrum can be traced back to the reduced surface coordination
number. Surface correlation effects can be strongly amplified by changes of the
hopping integrals at the surface.Comment: to appear in PRB; 8 pages, 6 figure
Spin state transition in LaCoO3 by variational cluster approximation
The variational cluster approximation is applied to the calculation of
thermodynamical quantities and single-particle spectra of LaCoO3. Trial
self-energies and the numerical value of the Luttinger-Ward functional are
obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts
LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase
of the occupation of high-spin Co3+ ions causes the temperature dependence of
entropy and magnetic susceptibility. The single particle spectral function
agrees well with experiment, the experimentally observed temperature dependence
of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies
with experiment highlight the importance of spin orbit coupling and local
lattice relaxation.Comment: Revtex file with 10 eps figure
Correlated band structure of NiO, CoO and MnO by variational cluster approximation
The variational cluster approximation proposed by Potthoff is applied to the
calculation of the single-particle spectral function of the transition metal
oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the
Luttinger-Ward functional are obtained by exact diagonalization of a
TMO6-cluster. The single-particle parameters of this cluster serve as
variational parameters to construct a stationary point of the grand potential
of the lattice system. The stationary point is found by a crossover procedure
which allows to go continuously from an array of disconnected clusters to the
lattice system. The self-energy is found to contain irrelevant degrees of
freedom which have marginal impact on the grand potential and which need to be
excluded to obtain meaningful results. The obtained spectral functions are in
good agreement with experimental data.Comment: 14 pages, 17 figure
Mott transitions in correlated electron systems with orbital degrees of freedom
Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard
model are studied by means of a generalization of the linearized dynamical
mean-field theory. The method allows for an efficient and reliable
determination of the critical interaction U_c for any integer filling n and
different M at zero temperature. For half-filling a linear dependence of U_c on
M is found. Inclusion of the (full) Hund's rule exchange J results in a strong
reduction of U_c. The transition turns out to change qualitatively from
continuous for J=0 to discontinuous for any finite J
Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films
The influence of uncorrelated (nonmagnetic) overlayers on the magnetic
properties of thin itinerant-electron films is investigated within the
single-band Hubbard model. The Coulomb correlation between the electrons in the
ferromagnetic layers is treated by using the spectral density approach (SDA).
It is found that the presence of nonmagnetic layers has a strong effect on the
magnetic properties of thin films. The Curie temperatures of very thin films
are modified by the uncorrelated overlayers. The quasiparticle density of
states is used to analyze the results. In addition, the coupling between the
ferromagnetic layers and the nonmagnetic layers is discussed in detail. The
coupling depends on the band occupation of the nonmagnetic layers, while it is
almost independent of the number of the nonmagnetic layers. The induced
polarization in the nonmagnetic layers shows a long-range decreasing
oscillatory behavior and it depends on the coupling between ferromagnetic and
nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see:
http://orion.physik.hu-berlin.d
Surface metal-insulator transition in the Hubbard model
The correlation-driven metal-insulator (Mott) transition at a solid surface
is studied within the Hubbard model for a semi-infinite lattice by means of the
dynamical mean-field theory. The transition takes place at a unique critical
strength of the interaction. Depending on the surface geometry, the interaction
strength and the wave vector, we find one-electron excitations in the coherent
part of the surface-projected metallic spectrum which are confined to two
dimensions.Comment: LaTeX, 9 pages, 5 eps figures included, Phys. Rev. B (in press
- …