1,248 research outputs found

    Variational cluster approach to correlated electron systems in low dimensions

    Full text link
    A self-energy-functional approach is applied to construct cluster approximations for correlated lattice models. It turns out that the cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are limiting cases of a more general cluster method. Results for the one-dimensional Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change

    Correlation and surface effects in Vanadium Oxides

    Full text link
    Recent photoemission experiments have shown strong surface modifications in the spectra from vanadium oxides as (V,Cr)_2O_3 or (Sr,Ca)VO_3. The effective mass is enhanced at the surface and the coherent part of the surface spectrum is narrowed as compared to the bulk. The quasiparticle weight is more sensitive at the surface than in the bulk against bandwidth variations. We investigate these effects theoretically considering the single-band Hubbard model for a film geometry. A simplified dynamical mean-field scheme is used to calculate the main features of the interacting layer-dependent spectral function. It turns out that the experimentally confirmed effects are inherent properties of a system of strongly correlated electrons. The reduction of the weight and the variance of the coherent part of the surface spectrum can be traced back to the reduced surface coordination number. Surface correlation effects can be strongly amplified by changes of the hopping integrals at the surface.Comment: to appear in PRB; 8 pages, 6 figure

    Spin state transition in LaCoO3 by variational cluster approximation

    Full text link
    The variational cluster approximation is applied to the calculation of thermodynamical quantities and single-particle spectra of LaCoO3. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase of the occupation of high-spin Co3+ ions causes the temperature dependence of entropy and magnetic susceptibility. The single particle spectral function agrees well with experiment, the experimentally observed temperature dependence of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies with experiment highlight the importance of spin orbit coupling and local lattice relaxation.Comment: Revtex file with 10 eps figure

    Correlated band structure of NiO, CoO and MnO by variational cluster approximation

    Full text link
    The variational cluster approximation proposed by Potthoff is applied to the calculation of the single-particle spectral function of the transition metal oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a TMO6-cluster. The single-particle parameters of this cluster serve as variational parameters to construct a stationary point of the grand potential of the lattice system. The stationary point is found by a crossover procedure which allows to go continuously from an array of disconnected clusters to the lattice system. The self-energy is found to contain irrelevant degrees of freedom which have marginal impact on the grand potential and which need to be excluded to obtain meaningful results. The obtained spectral functions are in good agreement with experimental data.Comment: 14 pages, 17 figure

    Mott transitions in correlated electron systems with orbital degrees of freedom

    Full text link
    Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard model are studied by means of a generalization of the linearized dynamical mean-field theory. The method allows for an efficient and reliable determination of the critical interaction U_c for any integer filling n and different M at zero temperature. For half-filling a linear dependence of U_c on M is found. Inclusion of the (full) Hund's rule exchange J results in a strong reduction of U_c. The transition turns out to change qualitatively from continuous for J=0 to discontinuous for any finite J

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d

    Surface metal-insulator transition in the Hubbard model

    Full text link
    The correlation-driven metal-insulator (Mott) transition at a solid surface is studied within the Hubbard model for a semi-infinite lattice by means of the dynamical mean-field theory. The transition takes place at a unique critical strength of the interaction. Depending on the surface geometry, the interaction strength and the wave vector, we find one-electron excitations in the coherent part of the surface-projected metallic spectrum which are confined to two dimensions.Comment: LaTeX, 9 pages, 5 eps figures included, Phys. Rev. B (in press
    • …
    corecore