4 research outputs found

    Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages

    Get PDF
    BACKGROUND: Previous studies of prostate cancer autoantibodies have largely focused on diagnostic applications. So far, there have been no reports attempting to more comprehensively profile the landscape of prostate cancer-associated antibodies. Specifically, it is unknown whether the quantity of antibodies or the types of proteins recognized change with disease progression. METHODS: A peptide microarray spanning the amino acid sequences of the gene products of 1611 prostate cancer-associated genes was synthesized. Serum samples from healthy male volunteers (n=15) and patients with prostate cancer (n=85) were used to probe the array. These samples included patients with various clinical stages of disease: newly diagnosed localized prostate cancer (n=15), castration-sensitive non-metastatic prostate cancer (nmCSPC, n=40), castration-resistant non-metastatic prostate cancer (n=15) and castration-resistant metastatic disease (n=15). The patients with nmCSPC received treatment with either standard androgen deprivation therapy (ADT) or an antitumor DNA vaccine encoding prostatic acid phosphatase. Serial sera samples from these individuals were also used to probe the array, to secondarily determine whether this approach could be used to detect treatment-related changes. RESULTS: We demonstrated that this peptide array yielded highly reproducible measurements of serum IgG levels. We found that the overall number of antibody responses did not increase with disease burden. However, the composition of recognized proteins shifted with clinical stage of disease. Our analysis revealed that the largest difference was between patients with castration-sensitive and castration-resistant disease. Patients with castration-resistant disease recognized more proteins associated with nucleic acid binding and gene regulation compared with men in other groups. Our longitudinal data showed that treatments can elicit antibodies detectable by this array, and notably vaccine-treated patients developed increased responses to more proteins over the course of treatment than did ADT-treated patients. CONCLUSIONS: This study represents the largest survey of prostate cancer-associated antibodies to date. We have been able to characterize the classes of proteins recognized by patients and determine how they change with disease burden. Our findings further demonstrate the potential of this platform for measuring antigen spread and studying responses to immunomodulatory therapies

    Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer

    No full text
    Prostate cancer is the most diagnosed malignancy in men in the United States and the second leading cause of cancer-related death. For localized disease, radiation therapy is a standard treatment that is often curative. For metastatic disease, radiation therapy has been primarily used for palliation, however, several newer systemic radiation therapies have been demonstrated to significantly improve patient outcomes and improve survival. In particular, several targeted radionuclide therapies have been approved for the treatment of advanced-stage cancer, including strontium-89, samarium-153, and radium-223 for bone-metastatic disease, and lutetium-177-labeled PSMA-617 for patients with prostate-specific membrane antigen (PSMA)-expressing metastatic castration-resistant prostate cancer (mCRPC). Contrarily, immune-based treatments have generally demonstrated little activity in advanced prostate cancer, with the exception of the autologous cellular vaccine, sipuleucel-T. This has been attributed to the presence of an immune-suppressive prostate cancer microenvironment. The ability of radiation therapy to not only eradicate tumor cells but also potentially other immune-regulatory cells within the tumor immune microenvironment suggests that targeted radionuclide therapies may be well poised to combine with immune-targeted therapies to eliminate prostate cancer metastases more effectively. This review provides an overview of the recent advances of targeted radiation agents currently approved for prostate cancer, and those being investigated in combination with immunotherapy, and discusses the challenges as well as the opportunities in this field

    Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages

    Get PDF
    Background Previous studies of prostate cancer autoantibodies have largely focused on diagnostic applications. So far, there have been no reports attempting to more comprehensively profile the landscape of prostate cancer-associated antibodies. Specifically, it is unknown whether the quantity of antibodies or the types of proteins recognized change with disease progression.Methods A peptide microarray spanning the amino acid sequences of the gene products of 1611 prostate cancer-associated genes was synthesized. Serum samples from healthy male volunteers (n=15) and patients with prostate cancer (n=85) were used to probe the array. These samples included patients with various clinical stages of disease: newly diagnosed localized prostate cancer (n=15), castration-sensitive non-metastatic prostate cancer (nmCSPC, n=40), castration-resistant non-metastatic prostate cancer (n=15) and castration-resistant metastatic disease (n=15). The patients with nmCSPC received treatment with either standard androgen deprivation therapy (ADT) or an antitumor DNA vaccine encoding prostatic acid phosphatase. Serial sera samples from these individuals were also used to probe the array, to secondarily determine whether this approach could be used to detect treatment-related changes.Results We demonstrated that this peptide array yielded highly reproducible measurements of serum IgG levels. We found that the overall number of antibody responses did not increase with disease burden. However, the composition of recognized proteins shifted with clinical stage of disease. Our analysis revealed that the largest difference was between patients with castration-sensitive and castration-resistant disease. Patients with castration-resistant disease recognized more proteins associated with nucleic acid binding and gene regulation compared with men in other groups. Our longitudinal data showed that treatments can elicit antibodies detectable by this array, and notably vaccine-treated patients developed increased responses to more proteins over the course of treatment than did ADT-treated patients.Conclusions This study represents the largest survey of prostate cancer-associated antibodies to date. We have been able to characterize the classes of proteins recognized by patients and determine how they change with disease burden. Our findings further demonstrate the potential of this platform for measuring antigen spread and studying responses to immunomodulatory therapies

    Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC)

    No full text
    Metastatic castration-resistant prostate cancer (mCRPC) is a challenging disease to treat, with poor outcomes for patients. One antitumor vaccine, sipuleucel-T, has been approved as a treatment for mCRPC. DNA vaccines are another form of immunotherapy under investigation. DNA immunizations elicit antigen-specific T cells that cause tumor cell lysis, which should translate to meaningful clinical responses. They are easily amenable to design alterations, scalable for large-scale manufacturing, and thermo-stable for easy transport and distribution. Hence, they offer advantages over other vaccine formulations. However, clinical trials with DNA vaccines as a monotherapy have shown only modest clinical effects against tumors. Standard therapies for CRPC including androgen-targeted therapies, radiation therapy and chemotherapy all have immunomodulatory effects, which combined with immunotherapies such as DNA vaccines, could potentially improve treatment. In addition, many investigational drugs are being developed which can augment antitumor immunity, and together with DNA vaccines can further enhance antitumor responses in preclinical models. We reviewed the literature available prior to July 2020 exploring the use of DNA vaccines in the treatment of prostate cancer. We also examined various approved and experimental therapies that could be combined with DNA vaccines to potentially improve their antitumor efficacy as treatments for mCRPC
    corecore