45 research outputs found

    A Parametric Analysis of Capillary Height in Single-Layer, Small-Scale Microfluidic Artificial Lungs

    No full text
    Microfluidic artificial lungs (μALs) are being investigated for their ability to closely mimic the size scale and cellular environment of natural lungs. Researchers have developed μALs with small artificial capillary diameters (10–50 µm; to increase gas exchange efficiency) and with large capillary diameters (~100 µm; to simplify design and construction). However, no study has directly investigated the impact of capillary height on μAL properties. Here, we use Murray’s law and the Hagen-Poiseuille equation to design single-layer, small-scale μALs with capillary heights between 10 and 100 µm. Each µAL contained two blood channel types: capillaries for gas exchange; and distribution channels for delivering blood to/from capillaries. Three designs with capillary heights of 30, 60, and 100 µm were chosen for further modeling, implementation and testing with blood. Flow simulations were used to validate and ensure equal pressures. Designs were fabricated using soft lithography. Gas exchange and pressure drop were tested using whole bovine blood. All three designs exhibited similar pressure drops and gas exchange; however, the μAL with 60 µm tall capillaries had a significantly higher wall shear rate (although physiologic), smaller priming volume and smaller total blood contacting surface area than the 30 and 100 µm designs. Future μAL designs may need to consider the impact of capillary height when optimizing performance

    Design Analysis and Optimization of a Single-Layer PDMS Microfluidic Artificial Lung

    No full text

    Comparative genetics of the major histocompatibility complex in humans and nonhuman primates

    No full text
    The major histocompatibility complex (MHC) is one of the most gene-dense regions of the mammalian genome. Multiple genes within the human MHC (HLA) show extensive polymorphism, and currently, more than 26,000 alleles divided over 39 different genes are known. Nonhuman primate (NHP) species are grouped into great and lesser apes and Old and New World monkeys, and their MHC is studied mostly because of their important role as animal models in preclinical research or in connection with conservation biology purposes. The evolutionary equivalents of many of the HLA genes are present in NHP species, and these genes may also show abundant levels of polymorphism. This review is intended to provide a comprehensive comparison relating to the organization and polymorphism of human and NHP MHC regions
    corecore