4 research outputs found

    Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteolytic degradation has emerged as a key pathway involved in controlling levels of the Alzheimer's disease (AD)-associated amyloid-β (Aβ) peptide in the brain. The endopeptidase, neprilysin, has been implicated as a major Aβ degrading enzyme in mice and humans. Previous short and intermediate term studies have shown the potential therapeutic application of neprilysin by delivering this enzyme into the brain of APP transgenic mice using gene transfer with viral vectors. However the effects of long-term neprilysin gene transfer on other aspects of Aβ associated pathology have not been explored yet in APP transgenic mice.</p> <p>Results</p> <p>We show that the sustained expression of neprilysin for up to 6 months lowered not only the amyloid plaque load but also reduced the levels of intracellular Aβ immunoreactivity. This was associated with improved behavioral performance in the water maze and ameliorated the dendritic and synaptic pathology in the APP transgenic mice.</p> <p>Conclusion</p> <p>These data support the possibility that long-term neprilysin gene therapy improves behavioral and neurodegenerative pathology by reducing intracellular Aβ.</p

    Peripheral Delivery of a CNS Targeted, Metalo-Protease Reduces Aβ Toxicity in a Mouse Model of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD), an incurable, progressive neurodegenerative disorder, is the most common form of dementia. Therapeutic options have been elusive due to the inability to deliver proteins across the blood-brain barrier (BBB). In order to improve the therapeutic potential for AD, we utilized a promising new approach for delivery of proteins across the BBB. We generated a lentivirus vector expressing the amyloid β-degrading enzyme, neprilysin, fused to the ApoB transport domain and delivered this by intra-peritoneal injection to amyloid protein precursor (APP) transgenic model of AD. Treated mice had reduced levels of Aβ, reduced plaques and increased synaptic density in the CNS. Furthermore, mice treated with the neprilysin targeting the CNS had a reversal of memory deficits. Thus, the addition of the ApoB transport domain to the secreted neprilysin generated a non-invasive therapeutic approach that may be a potential treatment in patients with AD

    Ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees

    No full text
    Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2-5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2-5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2-5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2-5 transcript. We experimentally verified the cleavage of PtrHAP2-5 at the predicted miR169a site at the time when PtrHAP2-5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees. © 2013 Elsevier Inc
    corecore