31 research outputs found
Current challenges for preseismic electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process
Are there credible electromagnetic (EM) EQ precursors? This a question
debated in the scientific community and there may be legitimate reasons for the
critical views. The negative view concerning the existence of EM precursors is
enhanced by features that accompany their observation which are considered as
paradox ones, namely, these signals: (i) are not observed at the time of EQs
occurrence and during the aftershock period, (ii) are not accompanied by large
precursory strain changes, (iii) are not accompanied by simultaneous geodetic
or seismological precursors and (v) their traceability is considered
problematic. In this work, the detected candidate EM precursors are studied
through a shift in thinking towards the basic science findings relative to
granular packings, micron-scale plastic flow, interface depinning, fracture
size effects, concepts drawn from phase transitions, self-affine notion of
fracture and faulting process, universal features of fracture surfaces, recent
high quality laboratory studies, theoretical models and numerical simulations.
Strict criteria are established for the definition of an emerged EM anomaly as
a preseismic one, while, precursory EM features, which have been considered as
paradoxes, are explained. A three-stage model for EQ generation by means of
preseismic fracture-induced EM emissions is proposed. The claim that the
observed EM precursors may permit a real-time and step-by-step monitoring of
the EQ generation is tested
On the puzzling feature of the silence of precursory electromagnetic emissions
It has been suggested that fracture-induced MHz-kHz electromagnetic (EM)
emissions, which emerge from a few days up to a few hours before the main
seismic shock occurrence permit a real-time monitoring of the damage process
during the last stages of earthquake preparation, as it happens at the
laboratory scale. Despite fairly abundant evidence, EM precursors have not been
adequately accepted as credible physical phenomena. These negative views are
enhanced by the fact that certain 'puzzling features' are repetitively observed
in candidate fracture-induced pre-seismic EM emissions. More precisely, EM
silence in all frequency bands appears before the main seismic shock
occurrence, as well as during the aftershock period. Actually, the view that
'acceptance of 'precursive' EM signals without convincing co-seismic signals
should not be expected' seems to be reasonable. In this work we focus on this
point. We examine whether the aforementioned features of EM silence are really
puzzling ones or, instead, reflect well-documented characteristic features of
the fracture process, in terms of: universal structural patterns of the
fracture process, recent laboratory experiments, numerical and theoretical
studies of fracture dynamics, critical phenomena, percolation theory, and
micromechanics of granular materials. Our analysis shows that these features
should not be considered puzzling.Comment: arXiv admin note: text overlap with arXiv:cond-mat/0603542 by other
author
The Earth as a living planet: human-type diseases in the earthquake preparation process
The new field of complex systems supports the view that a number of systems
arising from disciplines as diverse as physics, biology, engineering, and
economics may have certain quantitative features that are intriguingly similar.
The earth is a living planet where many complex systems run perfectly without
stopping at all. The earthquake generation is a fundamental sign that the earth
is a living planet. Recently, analyses have shown that human-brain-type disease
appears during the earthquake generation process. Herein, we show that
human-heart-type disease appears during the earthquake preparation of the
earthquake process. The investigation is mainly attempted by means of critical
phenomena, which have been proposed as the likely paradigm to explain the
origins of both heart electric fluctuations and fracture induced
electromagnetic fluctuations. We show that a time window of the damage
evolution within the heterogeneous Earth's crust and the healthy heart's
electrical action present the characteristic features of the critical point of
a thermal second order phase transition. A dramatic breakdown of critical
characteristics appears in the tail of the fracture process of heterogeneous
system and the injury heart's electrical action. Analyses by means of Hurst
exponent and wavelet decomposition further support the hypothesis that a
dynamical analogy exists between the geological and biological systems under
study
Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake
The variation of fractal dimension and entropy during a damage evolution
process, especially approaching critical failure, has been recently
investigated. A sudden drop of fractal dimension has been proposed as a
quantitative indicator of damage localization or a likely precursor of an
impending catastrophic failure. In this contribution, electromagnetic emissions
recorded prior to significant earthquake are analysed to investigate whether
they also present such sudden fractal dimension and entropy drops as the main
catastrophic event is approaching. The pre-earthquake electromagnetic time
series analysis results reveal a good agreement to the theoretically expected
ones indicating that the critical fracture is approaching