3 research outputs found

    Two-neutron halo nuclei in one dimension: dineutron correlation and breakup reaction

    Full text link
    We propose a simple schematic model for two-neutron halo nuclei. In this model, the two valence neutrons move in a one-dimensional mean field, interacting with each other via a density-dependent contact interaction. We first investigate the ground state properties, and demonstrate that the dineutron correlation can be realized with this simple model due to the admixture of even- and odd-parity single-particle states. We then solve the time-dependent two-particle Schr\"odinger equation under the influence of a time-dependent one-body external field, in order to discuss the effect of dineutron correlation on nuclear breakup processes. The time evolution of two-particle density shows that the dineutron correlation enhances the total breakup probability, especially for the two-neutron breakup process, in which both the valence neutrons are promoted to continuum scattering states. We find that the interaction between the two particles definitely favours a spatial correlation of the two outgoing particles, which are mainly emitted in the same direction.Comment: 17 pages, 11 figure

    Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

    Full text link
    We point out a strong influence of the pairing force on the size of the two neutron Cooper pair in 11^{11}Li, and to a lesser extent also in 6^6He. It seems that these are quite unique situations, since Cooper pair sizes of stable superfluid nuclei are very little influenced by the intensity of pairing, as recently reported. We explore the difference between 11^{11}Li and heavier superfulid nuclei, and discuss reasons for the exceptional situation in 11^{11}Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST
    corecore