9 research outputs found

    Independent origin of plasmodium falciparum antifolate super-resistance, Uganda, Tanzania, and Ethiopia.

    Get PDF
    Super-resistant Plasmodium falciparum threatens the effectiveness of sulfadoxine-pyrimethamine in intermittent preventive treatment for malaria during pregnancy. It is characterized by the A581G Pfdhps mutation on a background of the double-mutant Pfdhps and the triple-mutant Pfdhfr. Using samples collected during 2004-2008, we investigated the evolutionary origin of the A581G mutation by characterizing microsatellite diversity flanking Pfdhps triple-mutant (437G+540E+581G) alleles from 3 locations in eastern Africa and comparing it with double-mutant (437G+540E) alleles from the same area. In Ethiopia, both alleles derived from 1 lineage that was distinct from those in Uganda and Tanzania. Uganda and Tanzania triple mutants derived from the previously characterized southeastern Africa double-mutant lineage. The A581G mutation has occurred multiple times on local Pfdhps double-mutant backgrounds; however, a novel microsatellite allele incorporated into the Tanzania lineage since 2004 illustrates the local expansion of emergent triple-mutant lineages

    Shadoo (Sprn) and prion disease incubation time in mice

    Get PDF
    Prion diseases are transmissible neurodegenerative disorders of mammalian species and include scrapie, bovine spongiform encephalopathy (BSE), and variant Creutzfeldt-Jakob disease (vCJD). The prion protein (PrP) plays a key role in the disease, with coding polymorphism in both human and mouse influencing disease susceptibility and incubation time, respectively. Other genes are also thought to be important and a plausible candidate is Sprn, which encodes the PrP-like protein Shadoo (Sho). Sho is expressed in the adult central nervous system and exhibits neuroprotective activity reminiscent of PrP in an in vitro assay. To investigate the role of Sprn in prion disease incubation time we sequenced the open reading frame (ORF) in a diverse panel of mice and saw little variation except in strains derived from wild-trapped mice. Sequencing the untranslated regions revealed polymorphisms that allowed us to carry out an association study of incubation period in the Northport heterogeneous stock of mice inoculated with Chandler/RML prions. We also examined the expression level of Sprn mRNA in the brains of normal and prion-infected mice and saw no correlation with either genotype or incubation time. We therefore conclude that Sprn does not play a major role in prion disease incubation time in these strains of mice

    HECTD2 Is Associated with Susceptibility to Mouse and Human Prion Disease

    Get PDF
    Prion diseases are fatal transmissible neurodegenerative disorders, which include Scrapie, Bovine Spongiform Encephalopathy (BSE), Creutzfeldt-Jakob Disease (CJD), and kuru. They are characterised by a prolonged clinically silent incubation period, variation in which is determined by many factors, including genetic background. We have used a heterogeneous stock of mice to identify Hectd2, an E3 ubiquitin ligase, as a quantitative trait gene for prion disease incubation time in mice. Further, we report an association between HECTD2 haplotypes and susceptibility to the acquired human prion diseases, vCJD and kuru. We report a genotype-associated differential expression of Hectd2 mRNA in mouse brains and human lymphocytes and a significant up-regulation of transcript in mice at the terminal stage of prion disease. Although the substrate of HECTD2 is unknown, these data highlight the importance of proteosome-directed protein degradation in neurodegeneration. This is the first demonstration of a mouse quantitative trait gene that also influences susceptibility to human prion diseases. Characterisation of such genes is key to understanding human risk and the molecular basis of incubation periods

    Sustained use of insecticide-treated curtains is not associated with greater circulation of drug-resistant malaria parasites, or with higher risk of treatment failure among children with uncomplicated malaria in Burkina Faso.

    Get PDF
    The impact of vector control measures on the evolution of antimalarial drug resistance is an important issue for malaria control programs. We investigated whether the in vivo efficacy of chloroquine (CQ) in children aged 6-59 months with uncomplicated malaria differed in 9 villages that had benefited from long-term use of insecticide-treated curtains (ITCs) and in 9 nearby non-ITC villages. We also compared the prevalence of genetic markers of resistance to CQ and sulfadoxine-pyrimethamine (SP) between the two groups of villages. The study enrolled 1,035 children with uncomplicated malaria and 231 infected but asymptomatic children. After taking account of re-infections, the proportions of children who experienced clinical failure after treatment with CQ were 14% and 19% in ITC and non-ITC villages, respectively (OR = 0.68; 95% CI: 0.39, 1.18). Parasitologic failure was observed in 49% of children in ITC villages and 58% of children in non-ITC villages (OR = 0.71 95%CI: 0.44, 1.13). The proportion of symptomatic children who harbored parasites carrying the pfcrt-76T allele was 43% in ITC villages and 40% in non-ITC villages (OR = 1.09; 95%CI: 0.80, 1.50). The pfmdr1-86Y allele was detected in 31% and 29% of children in the two groups of villages (OR = 1.14; 95%CI: 0.75, 1.72). Triple mutations in the dhfr gene were observed in 12% of children in both groups. No double mutations in the dhps gene were observed. Similar results were observed in asymptomatic children. In this setting, ITC use was not associated with increased circulation of parasites resistant to standard antimalarial drugs, or with a greater risk of treatment failure among children less than 5 years of age

    Emergence of a Dhfr Mutation Conferring High-Level Drug Resistance in Plasmodium Falciparum Populations from Southwest Uganda

    No full text
    The S108N, C59R, and N51I mutations in the Plasmodium falciparum gene that encodes dihydrofolate reductase, dhfr, confer resistance to pyrimethamine and are common in Africa. However, the I164L mutation, which confers high-level resistance, is rarely seen. We found a 14% prevalence of the I164L mutation among a sample of 51 patients with malaria in Kabale District in southwest Uganda in 2005 and a 4% prevalence among 72 patients with malaria in the neighboring district of Rukungiri during the same year. Surveillance at 6 sites across Uganda during 2002-2004 reported a single case of infection involving an I164L mutant, also in the southwest, suggesting that this is a regional hot spot. The spatial clustering and increasing prevalence of the I164L mutation is indicative of local transmission of the mutant. Targeted surveillance is needed to confirm the extent of the spread of the I164L mutation and to monitor the impact of I164L on the efficacy of antifolates for intermittent preventive treatment of pregnant women and/or infants with falciparum malaria

    RESEARCH Independent Origin of

    No full text
    Super-resistant Plasmodium falciparum threatens the effectiveness of sulfadoxine–pyrimethamine in intermittent preventive treatment for malaria during pregnancy. It is characterized by the A581G Pfdhps mutation on a background of the double-mutant Pfdhps and the triple-mutant Pfdhfr. Using samples collected during 2004–2008, we investigated the evolutionary origin of the A581G mutation by characterizing microsatellite diversity flanking Pfdhps triple-mutant (437G+540E+581G) alleles from 3 locations in eastern Africa and comparing it with double-mutant (437G+540E) alleles from the same area. In Ethiopia, both alleles derived from 1 lineage that was distinct from those in Uganda and Tanzania. Uganda and Tanzania triple mutants derived from the previously characterized southeastern Africa doublemutant lineage. The A581G mutation has occurred multiple times on local Pfdhps double-mutant backgrounds; however, a novel microsatellite allele incorporated into the Tanzania lineage since 2004 illustrates the local expansion of emergent triple-mutant lineages. Controlling and reducing malaria requires a combination of vector control measures and administratio
    corecore