43 research outputs found

    UBVRI twilight sky brightness at ESO-Paranal

    Full text link
    Twilight studies have proved to be important tools to analyze the atmospheric structure with interesting consequences on the characterization of astronomical sites. Active discussions on this topic have been recently restarted in connection with the evaluation of Dome C, Antarctica as a potential astronomical site and several site-testing experiments, including twilight brightness measurements, are being prepared. The present work provides for the first time absolute photometric measurements of twilight sky brightness for ESO-Paranal (Chile), which are meant both as a contribution to the site monitoring and as reference values in the analysis of other sites, including Dome C. The UBVRI twilight sky brightness was estimated on more than 2000 FORS1 archival images, which include both flats and standard stars observations taken in twilight, covering a Sun zenith distance range 94-112 deg. The comparison with a low altitude site shows that Paranal V twilight sky brightness is about 30% lower, implying that some fraction of multiple scattering has to take place at an altitude of a few km above the sea level.Comment: 11 pages, 13 figures, accepted for publication in A&

    Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign

    Get PDF
    We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) in September 2016 at Cabauw, the Netherlands (51.97∘ N, 4.93∘ E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the first time. Systematic and random discrepancies of the HONO results are derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of ±0.3×1015 molec. cm−2, which is half of the typical random discrepancy of 0.6×1015 molec. cm−2. For a typical high HONO delta SCD of 2×1015 molec. cm−2, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of ∼±0.5×1014 molec. cm−2 and ∼±0.1 ppb (typically ∼20 %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by ∼5 %. However, some data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than ∼3×1014 molec. cm−2. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of ∼0.4 ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to represent the ambient HONO profiles well

    Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products of atmospheric trace gas columns

    Get PDF
    We introduce the new Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 product of total column ozone (O3), total and tropospheric column nitrogen dioxide (NO2), total column water vapour, total column bromine oxide (BrO), total column formaldehyde (HCHO), and total column sulfur dioxide (SO2) (daily products https://doi.org/10.15770/EUM_SAF_AC_0048, AC SAF, 2023a; monthly products https://doi.org/10.15770/EUM_SAF_AC_0049, AC SAF, 2023b). The GOME-2 level-3 products aim to provide easily translatable and user-friendly data sets to the scientific community for scientific progress as well as to satisfy public interest. The purpose of this paper is to present the theoretical basis as well as the verification and validation of the GOME-2 daily and monthly level-3 products. The GOME-2 level-3 products are produced using the overlapping area-weighting method. Details of the gridding algorithm are presented. The spatial resolution of the GOME-2 level-3 products is selected based on the sensitivity study. The consistency of the resulting level-3 products among three GOME-2 sensors is investigated through time series of global averages, zonal averages, and bias. The accuracy of the products is validated by comparison to ground-based observations. The verification and validation results show that the GOME-2 level-3 products are consistent with the level-2 data. Small discrepancies are found among three GOME-2 sensors, which are mainly caused by the differences in the instrument characteristic and level-2 processor. The comparison of GOME-2 level-3 products to ground-based observations in general shows very good agreement, indicating that the products are consistent and fulfil the requirements to serve the scientific community and general public
    corecore