1,274 research outputs found
Pulsive feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a non-symmetric potential
We examine a strange chaotic attractor and its unstable periodic orbits in
case of one degree of freedom nonlinear oscillator with non symmetric
potential. We propose an efficient method of chaos control stabilizing these
orbits by a pulsive feedback technique. Discrete set of pulses enable us to
transfer the system from one periodic state to another.Comment: 11 pages, 4 figure
Generation of scalar-tensor gravity effects in equilibrium state boson stars
Boson stars in zero-, one-, and two-node equilibrium states are modeled
numerically within the framework of Scalar-Tensor Gravity. The complex scalar
field is taken to be both massive and self-interacting. Configurations are
formed in the case of a linear gravitational scalar coupling (the Brans-Dicke
case) and a quadratic coupling which has been used previously in a cosmological
context. The coupling parameters and asymptotic value for the gravitational
scalar field are chosen so that the known observational constraints on
Scalar-Tensor Gravity are satisfied. It is found that the constraints are so
restrictive that the field equations of General Relativity and Scalar-Tensor
gravity yield virtually identical solutions. We then use catastrophe theory to
determine the dynamically stable configurations. It is found that the maximum
mass allowed for a stable state in Scalar-Tensor gravity in the present
cosmological era is essentially unchanged from that of General Relativity. We
also construct boson star configurations appropriate to earlier cosmological
eras and find that the maximum mass for stable states is smaller than that
predicted by General Relativity, and the more so for earlier eras. However, our
results also show that if the cosmological era is early enough then only states
with positive binding energy can be constructed.Comment: 20 pages, RevTeX, 11 figures, to appear in Class. Quantum Grav.,
comments added, refs update
CD4+ cytolytic effectors are inefficient in the clearance of Listeria monocytogenes
Cytotoxic T lymphocytes (CTL) recognize and lyse target cells through the interaction of the T-cell receptor complex with the class I or class II major histocompatibility complex (MHC). The production of class I-restricted CTL has been shown to be critical to the elimination of specific pathogens including . However, the function of class II-restricted CTL in the clearance of intracellular pathogens is poorly understood. H-2ÎČ-microglobulin-deficient mice (ÎČMâ/â) are not able to produce CD8 CTL in response to infection with . We used this model to evaluate the efficacy of class II-restricted CTL, in the absence of a class I-restricted response, during a primary infection with . We demonstrate that, despite their effectiveness in adoptive transfer of protection, -specific CD4 class II-restricted cytotoxic lymphocytes are ineffective in decreasing titres of in the spleen after an established infection. In ÎČMâ/â mice, persistence of in the spleen was found preferentially in class II-negative cells. Surprisingly, class I-restricted CTL from C57BL/6 mice were capable of decreasing bacterial titres during an established infection even in the absence of detectable class I on the surface of cells from ÎČMâ/â mice. These data strongly suggest that, in the absence of a class I-restricted response, pathogens that elicit a class II-restricted cytotoxic response may escape prompt eradication by the immune system
A differential method for bounding the ground state energy
For a wide class of Hamiltonians, a novel method to obtain lower and upper
bounds for the lowest energy is presented. Unlike perturbative or variational
techniques, this method does not involve the computation of any integral (a
normalisation factor or a matrix element). It just requires the determination
of the absolute minimum and maximum in the whole configuration space of the
local energy associated with a normalisable trial function (the calculation of
the norm is not needed). After a general introduction, the method is applied to
three non-integrable systems: the asymmetric annular billiard, the many-body
spinless Coulombian problem, the hydrogen atom in a constant and uniform
magnetic field. Being more sensitive than the variational methods to any local
perturbation of the trial function, this method can used to systematically
improve the energy bounds with a local skilled analysis; an algorithm relying
on this method can therefore be constructed and an explicit example for a
one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics
Recommended from our members
Surface Environmental Surveillance Procedures Manual
Environmental surveillance data are used in assessing the impact of current and past site operations on human health and the environment, demonstrating compliance with applicable local, state, and federal environmental regulations, and verifying the adequacy of containment and effluent controls. SESP sampling schedules are reviewed, revised, and published each calendar year in the Hanford Site Environmental Surveillance Master Sampling Schedule. Environmental samples are collected by SESP staff in accordance with the approved sample collection procedures documented in this manual
Topological classification of black Hole: Generic Maxwell set and crease set of horizon
The crease set of an event horizon or a Cauchy horizon is an important object
which determines qualitative properties of the horizon. In particular, it
determines the possible topologies of the spatial sections of the horizon. By
Fermat's principle in geometric optics, we relate the crease set and the
Maxwell set of a smooth function in the context of singularity theory. We
thereby give a classification of generic topological structure of the Maxwell
sets and the generic topologies of the spatial section of the horizon.Comment: 22 pages, 6 figure
Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP
We investigate the dynamics of a Bose--Einstein condensate (BEC) in a
triple-well trap in a three-level approximation. The inter-atomic interactions
are taken into account in a mean-field approximation (Gross-Pitaevskii
equation), leading to a nonlinear three-level model. New eigenstates emerge due
to the nonlinearity, depending on the system parameters. Adiabaticity breaks
down if such a nonlinear eigenstate disappears when the parameters are varied.
The dynamical implications of this loss of adiabaticity are analyzed for two
important special cases: A three level Landau-Zener model and the STIRAP
scheme. We discuss the emergence of looped levels for an equal-slope
Landau-Zener model. The Zener tunneling probability does not tend to zero in
the adiabatic limit and shows pronounced oscillations as a function of the
velocity of the parameter variation. Furthermore we generalize the STIRAP
scheme for adiabatic coherent population transfer between atomic states to the
nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds
the detuning.Comment: RevTex4, 7 pages, 11 figures, content extended and title/abstract
change
Stable Topologies of Event Horizon
In our previous work, it was shown that the topology of an event horizon (EH)
is determined by the past endpoints of the EH. A torus EH (the collision of two
EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In
the present article, we examine the stability of the topology of the EH. We see
that a simple case of a single spherical EH is unstable. Furthermore, in
general, an EH with handles (a torus, a double torus, ...) is structurally
stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe
Dynamics and Thermodynamics of Systems with Long Range Interactions: an Introduction
We review theoretical results obtained recently in the framework of
statistical mechanics to study systems with long range forces. This fundamental
and methodological study leads us to consider the different domains of
applications in a trans-disciplinary perspective (astrophysics, nuclear
physics, plasmas physics, metallic clusters, hydrodynamics,...) with a special
emphasis on Bose-Einstein condensates.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume:
``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T.
Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics
Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/
- âŠ