525 research outputs found
Thermodynamic phase transitions and shock singularities
We show that under rather general assumptions on the form of the entropy
function, the energy balance equation for a system in thermodynamic equilibrium
is equivalent to a set of nonlinear equations of hydrodynamic type. This set of
equations is integrable via the method of the characteristics and it provides
the equation of state for the gas. The shock wave catastrophe set identifies
the phase transition. A family of explicitly solvable models of
non-hydrodynamic type such as the classical plasma and the ideal Bose gas are
also discussed.Comment: revised version, 18 pages, 6 figure
Recommended from our members
Heatpipe power system development
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a design approach that could enable the development of near-term, low-cost, space fission-power systems. Sixteen desired attributes were identified for such systems and detailed analyses were performed to verify that they are feasible. Preliminary design work was performed on one concept, the Heatpipe Power system (HPS). As a direct result of this project, funding was obtained from the National Aeronautics and Space Administration to build and test an HPS module. The module tests went well, and they now have funding to build a bimodal module
Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP
We investigate the dynamics of a Bose--Einstein condensate (BEC) in a
triple-well trap in a three-level approximation. The inter-atomic interactions
are taken into account in a mean-field approximation (Gross-Pitaevskii
equation), leading to a nonlinear three-level model. New eigenstates emerge due
to the nonlinearity, depending on the system parameters. Adiabaticity breaks
down if such a nonlinear eigenstate disappears when the parameters are varied.
The dynamical implications of this loss of adiabaticity are analyzed for two
important special cases: A three level Landau-Zener model and the STIRAP
scheme. We discuss the emergence of looped levels for an equal-slope
Landau-Zener model. The Zener tunneling probability does not tend to zero in
the adiabatic limit and shows pronounced oscillations as a function of the
velocity of the parameter variation. Furthermore we generalize the STIRAP
scheme for adiabatic coherent population transfer between atomic states to the
nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds
the detuning.Comment: RevTex4, 7 pages, 11 figures, content extended and title/abstract
change
Recommended from our members
Heatpipe space power and propulsion systems
Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems
Topological classification of black Hole: Generic Maxwell set and crease set of horizon
The crease set of an event horizon or a Cauchy horizon is an important object
which determines qualitative properties of the horizon. In particular, it
determines the possible topologies of the spatial sections of the horizon. By
Fermat's principle in geometric optics, we relate the crease set and the
Maxwell set of a smooth function in the context of singularity theory. We
thereby give a classification of generic topological structure of the Maxwell
sets and the generic topologies of the spatial section of the horizon.Comment: 22 pages, 6 figure
Stable Topologies of Event Horizon
In our previous work, it was shown that the topology of an event horizon (EH)
is determined by the past endpoints of the EH. A torus EH (the collision of two
EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In
the present article, we examine the stability of the topology of the EH. We see
that a simple case of a single spherical EH is unstable. Furthermore, in
general, an EH with handles (a torus, a double torus, ...) is structurally
stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe
Propagation of charged particle waves in a uniform magnetic field
This paper considers the probability density and current distributions
generated by a point-like, isotropic source of monoenergetic charges embedded
into a uniform magnetic field environment. Electron sources of this kind have
been realized in recent photodetachment microscopy experiments. Unlike the
total photocurrent cross section, which is largely understood, the spatial
profiles of charge and current emitted by the source display an unexpected
hierarchy of complex patterns, even though the distributions, apart from
scaling, depend only on a single physical parameter. We examine the electron
dynamics both by solving the quantum problem, i. e., finding the energy Green
function, and from a semiclassical perspective based on the simple cyclotron
orbits followed by the electron. Simulations suggest that the semiclassical
method, which involves here interference between an infinite set of paths,
faithfully reproduces the features observed in the quantum solution, even in
extreme circumstances, and lends itself to an interpretation of some (though
not all) of the rich structure exhibited in this simple problem.Comment: 39 pages, 16 figure
Dynamics and Thermodynamics of Systems with Long Range Interactions: an Introduction
We review theoretical results obtained recently in the framework of
statistical mechanics to study systems with long range forces. This fundamental
and methodological study leads us to consider the different domains of
applications in a trans-disciplinary perspective (astrophysics, nuclear
physics, plasmas physics, metallic clusters, hydrodynamics,...) with a special
emphasis on Bose-Einstein condensates.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume:
``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T.
Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics
Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/
Fuzzy Geometry of Phase Space and Quantization of Massive Fields
The quantum space-time and the phase space with fuzzy structure is
investigated as the possible quantization formalism. In this theory the state
of nonrelativistic particle corresponds to the element of fuzzy ordered set
(Foset) - fuzzy point. Due to Foset partial (weak) ordering, particle's space
coordinate x acquires principal uncertainty dx. It's shown that Shroedinger
formalism of Quantum Mechanics can be completely derived from consideration of
particle evolution in fuzzy phase space with minimal number of axioms.Comment: 13 pages, Talk given at QFEXT07 Workshop, Leipzig, Sept. 200
Mechanism of Deep-focus Earthquakes Anomalous Statistics
Analyzing the NEIC-data we have shown that the spatial deep-focus earthquake
distribution in the Earth interior over the 1993-2006 is characterized by the
clearly defined periodical fine discrete structure with period L=50 km, which
is solely generated by earthquakes with magnitude M 3.9 to 5.3 and only on the
convergent boundary of plates. To describe the formation of this structure we
used the model of complex systems by A. Volynskii and S. Bazhenov. The key
property of this model consists in the presence of a rigid coating on a soft
substratum. It is shown that in subduction processes the role of a rigid
coating plays the slab substance (lithosphere) and the upper mantle acts as a
soft substratum. Within the framework of this model we have obtained the
estimation of average values of stress in the upper mantle and Young's modulus
for the oceanic slab (lithosphere) and upper mantle.Comment: 9 pages, 7 figure
- …