25 research outputs found

    Influence of Bone Morphology on In Vivo Tibio-Femoral Kinematics in Healthy Knees during Gait Activities

    Full text link
    An improved understanding of the relationships between bone morphology and in vivo tibio-femoral kinematics potentially enhances functional outcomes in patients with knee disorders. The aim of this study was to quantify the influence of femoral and tibial bony morphology on tibio-femoral kinematics throughout complete gait cycles in healthy subjects. Twenty-six volunteers underwent clinical examination, radiographic assessment, and dynamic video-fluoroscopy during level walking, downhill walking, and stair descent. Femoral computer-tomography (CT) measurements included medial condylar (MC) and lateral condylar (LC) width, MC and LC flexion circle, and lateral femoral condyle index (LFCI). Tibial CT measurements included both medial (MTP) and lateral tibial plateau (LTP) slopes, depths, lengths, and widths. The influence of bony morphology on tibial internal/external rotation and anteroposterior (AP)-translation of the lateral and medial compartments were analyzed in a multiple regression model. An increase in tibial internal/external rotation could be demonstrated with decreasing MC width β: -0.30 (95% CI: -0.58 to -0.03) (p = 0.03) during the loaded stance phase of level walking. An increased lateral AP-translation occurred with both a smaller LC flexion circle β: -0.16 (95% CI: -0.28 to -0.05) (p = 0.007) and a deeper MTP β: 0.90 (95% CI: 0.23 to 1.56) (p = 0.01) during the loaded stance phase of level walking. The identified relationship between in vivo tibio-femoral kinematics and bone morphology supports a customized approach and individual assessment of these factors in patients with knee disorders and potentially enhances functional outcomes in anterior cruciate ligament injuries and total knee arthroplasty

    ISB clinical biomechanics award winner 2021: Tibio-femoral kinematics of natural versus replaced knees - A comparison using dynamic videofluoroscopy

    Full text link
    BACKGROUND A comparison of natural versus replaced tibio-femoral kinematics in vivo during challenging activities of daily living can help provide a detailed understanding of the mechanisms leading to unsatisfactory results and lay the foundations for personalised implant selection and surgical implantation, but also enhance further development of implant designs towards restoring physiological knee function. The aim of this study was to directly compare in vivo tibio-femoral kinematics in natural versus replaced knees throughout complete cycles of different gait activities using dynamic videofluoroscopy. METHODS Twenty-seven healthy and 30 total knee replacement subjects (GMK Sphere, GMK PS, GMK UC) were assessed during multiple complete gait cycles of level walking, downhill walking, and stair descent using dynamic videofluoroscopy. Following 2D/3D registration, tibio-femoral rotations, condylar antero-posterior translations, and the location of the centre of rotation were compared. FINDINGS The total knee replacement groups predominantly experienced reduced tibial internal/external rotation and altered medial and lateral condylar antero-posterior translations compared to natural knees. An average medial centre of rotation was found for the natural and GMK sphere groups in all three activities, whereas the GMK PS and UC groups experienced a more central to lateral centre of rotation. INTERPRETATION Each total knee replacement design exhibited characteristic motion patterns, with the GMK Sphere most closely replicating the medial centre of rotation found for natural knees. Despite substantial similarities between the subject groups, none of the implant geometries was able to replicate all aspects of natural tibio-femoral kinematics, indicating that different implant geometries might best address individual functional needs

    Personalised pose estimation from singleplane moving fluoroscope images using deep convolutional neural networks

    No full text
    Measuring joint kinematics is a key requirement for a plethora of biomechanical research and applications. While x-ray based systems avoid the soft-tissue artefacts arising in skinbased measurement systems, extracting the object's pose (translation and rotation) from the x-ray images is a time-consuming and expensive task. Based on about 106'000 annotated images of knee implants, collected over the last decade with our moving fluoroscope during activities of daily living, we trained a deep-learning model to automatically estimate the 6D poses for the femoral and tibial implant components. By pretraining a single stage of our architecture using renderings of the implant geometries, our approach offers personalised predictions of the implant poses, even for unseen subjects. Our approach predicted the pose of both implant components better than about 0.75 mm (in-plane translation), 25 mm (out-of-plane translation), and 2° (all Euler-angle rotations) over 50% of the test samples. When evaluating over 90% of test samples, which included heavy occlusions and low contrast images, translation performance was better than 1.5 mm (in-plane) and 30 mm (out-ofplane), while rotations were predicted better than 3-4°. Importantly, this approach now allows for pose estimation in a fully automated manner.ISSN:1932-620

    Kinematic Evaluation of the GMK Sphere Implant During Gait Activities: A Dynamic Videofluoroscopy Study

    Get PDF
    Joint stability is a primary concern in total knee joint replacement. The GMK Sphere prosthesis was specifically designed to provide medial compartment anterior-posterior (A-P) stability, while permitting rotational freedom of the joint through a flat lateral tibial surface. The objective of this study was to establish the changes in joint kinematics introduced by the GMK Sphere prosthesis during gait activities in comparison to conventional posterior-stabilized (PS) fixed-bearing and ultra-congruent (UC) mobile-bearing geometries. The A-P translation and internal/external rotation of three cohorts, each with 10 good outcome subjects (2.9 ± 1.6 years postop), with a GMK Sphere, GMK PS or GMK UC implant were analysed throughout complete cycles of gait activities using dynamic videofluoroscopy. The GMK Sphere showed the smallest range of medial compartment A-P translation for level walking, downhill walking, and stair descent (3.6 ± 0.9 mm, 3.1 ± 0.8 mm, 3.9 ± 1.3 mm), followed by the GMK UC (5.7 ± 1.0 mm, 8.0 ± 1.7 mm, 8.7 ± 1.9 mm) and the GMK PS (10.3 ± 2.2 mm, 10.1 ± 2.6 mm, 11.6 ± 1.6 mm) geometries. The GMK Sphere exhibited the largest range of lateral compartment A-P translation (12.1 ± 2.2 mm), and the largest range of tibial internal/external rotation (13.2 ± 2.2°), both during stair descent. This study has shown that the GMK Sphere clearly restricts A-P motion of the medial condyle during gait activities while still allowing a large range of axial rotation. The additional comparison against the conventional GMK PS and UC geometries, not only demonstrates that implant geometry is a key factor in governing tibio-femoral kinematics, but also that the geometry itself probably plays a more dominant role for joint movement than the type of gait activity. © 2019 The Authors. Journal of Orthopaedic Research®^{®} published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2337-2347, 2019

    Interpretation of natural tibio-femoral kinematics critically depends upon the kinematic analysis approach: A survey and comparison of methodologies

    No full text
    While there is general agreement on the transverse plane knee joint motion for loaded flexion activities, its kinematics during functional movements such as level walking are discussed more controversially. One possible cause of this controversy could originate from the interpretation of kinematics based on different analysis approaches. In order to understand the impact of these approaches on the interpretation of tibio-femoral motion, a set of dynamic videofluoroscopy data presenting continuous knee bending and complete cycles of walking in ten subjects was analysed using six different kinematic analysis approaches. Use of a functional flexion axis resulted in significantly smaller ranges of condylar translation compared to anatomical axes and contact approaches. All contact points were located significantly more anteriorly than the femur fixed axes after 70° of flexion, but also during the early/mid stance and late swing phases of walking. Overall, a central to medial transverse plane centre of rotation was found for both activities using all six kinematic analysis approaches, although individual subjects exhibited lateral centres of rotation using certain approaches. The results of this study clearly show that deviations from the true functional axis of rotation result in kinematic crosstalk, suggesting that functional axes should be reported in preference to anatomical axes. Contact approaches, on the other hand, can present additional information on the local tibio-femoral contact conditions. To allow a more standardised comparison and interpretation of tibio-femoral kinematics, results should therefore be reported using at least a functionally determined axis and possibly also a contact point approach.ISSN:0021-9290ISSN:1873-238

    Evaluation of an intensity-based algorithm for 2D/3D registration of natural knee videofluoroscopy data

    No full text
    The accurate quantification of in-vivo tibio-femoral kinematics is essential for understanding joint functionality, but determination of the 3D pose of bones from 2D single-plane fluoroscopic images remains challenging. We aimed to evaluate the accuracy, reliability and repeatability of an intensity-based 2D/3D registration algorithm. The accuracy was evaluated using fluoroscopic images of 2 radiopaque bones in 18 different poses, compared against a gold-standard fiducial calibration device. In addition, 3 natural femora and 3 natural tibiae were used to examine registration reliability and repeatability. Both manual fitting and intensity-based registration exhibited a mean absolute error of <1 mm in-plane. Overall, intensity-based registration of the femoral bone model revealed significantly higher translational and rotational errors than manual fitting, while no statistical differences (except for y-axis translation) were found for the tibial bone model. The repeatability of 108 intensity-based registrations showed mean in-plane standard deviations of 0.23–0.56 mm, but out-of-plane position repeatability was lower (mean SD: femur 7.98 mm, tibia 6.96 mm). SDs for rotations averaged 0.77–2.52°. While the algorithm registered some images extremely well, other images clearly required manual intervention. When the algorithm registered the bones repeatably, it was also accurate, suggesting an approach that includes manual intervention could become practical for efficient and accurate registration.ISSN:1350-4533ISSN:1873-403

    Knee implant kinematics are task-dependent

    No full text
    Although total knee arthroplasty (TKA) has become a standard surgical procedure for relieving pain, knowledge of the in vivo knee joint kinematics throughout common functional activities of daily living is still missing. The goal of this study was to analyse knee joint motion throughout complete cycles of daily activities in TKA subjects to establish whether a significant difference in joint kinematics occurs between different activities. Using dynamic videofluoroscopy, we assessed tibio-femoral kinematics in six subjects throughout complete cycles of walking, stair descent, sit-to-stand and stand-to-sit. The mean range of condylar anterior–posterior translation exhibited clear task dependency across all subjects. A significantly larger anterior–posterior translation was observed during stair descent compared to level walking and stand-to-sit. Local minima were observed at approximately 30° flexion for different tasks, which were more prominent during loaded task phases. This characteristic is likely to correspond to the specific design of the implant. From the data presented in this study, it is clear that the flexion angle alone cannot fully explain tibio-femoral implant kinematics. As a result, it seems that the assessment of complete cycles of the most frequent functional activities is imperative when evaluating the behaviour of a TKA design in vivo

    Influence of Bone Morphology on In Vivo Tibio-Femoral Kinematics in Healthy Knees during Gait Activities

    No full text
    An improved understanding of the relationships between bone morphology and in vivo tibio-femoral kinematics potentially enhances functional outcomes in patients with knee disorders. The aim of this study was to quantify the influence of femoral and tibial bony morphology on tibio-femoral kinematics throughout complete gait cycles in healthy subjects. Twenty-six volunteers underwent clinical examination, radiographic assessment, and dynamic video-fluoroscopy during level walking, downhill walking, and stair descent. Femoral computer-tomography (CT) measurements included medial condylar (MC) and lateral condylar (LC) width, MC and LC flexion circle, and lateral femoral condyle index (LFCI). Tibial CT measurements included both medial (MTP) and lateral tibial plateau (LTP) slopes, depths, lengths, and widths. The influence of bony morphology on tibial internal/external rotation and anteroposterior (AP)-translation of the lateral and medial compartments were analyzed in a multiple regression model. An increase in tibial internal/external rotation could be demonstrated with decreasing MC width &beta;: &minus;0.30 (95% CI: &minus;0.58 to &minus;0.03) (p = 0.03) during the loaded stance phase of level walking. An increased lateral AP-translation occurred with both a smaller LC flexion circle &beta;: &minus;0.16 (95% CI: &minus;0.28 to &minus;0.05) (p = 0.007) and a deeper MTP &beta;: 0.90 (95% CI: 0.23 to 1.56) (p = 0.01) during the loaded stance phase of level walking. The identified relationship between in vivo tibio-femoral kinematics and bone morphology supports a customized approach and individual assessment of these factors in patients with knee disorders and potentially enhances functional outcomes in anterior cruciate ligament injuries and total knee arthroplasty
    corecore