10 research outputs found
Pre-ALMA observations of GRBs in the mm/submm range
GRBs generate an afterglow emission that can be detected from radio to X-rays
during days, or even weeks after the initial explosion. The peak of this
emission crosses the mm/submm range during the first hours to days, making
their study in this range crucial for constraining the models. Observations
have been limited until now due to the low sensitivity of the observatories in
this range. We present observations of 10 GRB afterglows obtained from APEX and
SMA, as well as the first detection of a GRB with ALMA, and put them into
context with all the observations that have been published until now in the
spectral range that will be covered by ALMA. The catalogue of mm/submm
observations collected here is the largest to date and is composed of 102 GRBs,
of which 88 had afterglow observations, whereas the rest are host galaxy
searches. With our programmes, we contributed with data of 11 GRBs and the
discovery of 2 submm counterparts. In total, the full sample, including data
from the literature, has 22 afterglow detections with redshift ranging from
0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak
luminosities spanning 2.5 orders of magnitude, the most luminous reaching
10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at
0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of
the distribution of peak flux densities of GRB afterglows, based on the current
mm/submm sample. Observations in the mm/submm bands have been shown to be
crucial for our understanding of the physics of GRBs, but have until now been
limited by the sensitivity of the observatories. With the start of the
operations at ALMA, the sensitivity will be increased by more than an order of
magnitude. Our estimates predict that, once completed, ALMA will detect up to
98% of the afterglows if observed during the passage of the peak synchrotron
emission.Comment: 23 pages, 14 figures, 5 tables (one big one!), Accepted for
publication in A&A. Includes the first observation of a GRB afterglow with
ALM
An Unusual Stellar Death on Christmas Day
Long Gamma-Ray Bursts (GRBs) are the most dramatic examples of massive stellar deaths, usually associated with supernovae. They release ultra-relativistic jets producing non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the peculiar GRB 101225A (the "Christmas burst"). Its gamma-ray emission was exceptionally long and followed by a bright X-ray transient with a hot thermal component and an unusual optical couuterpart. During the first 10 days, the optical emission evolved as an expanding, cooling blackbody after which an additional component, consistent with a faint supernova, emerged. We determine its distance to 1.6 Gpc by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a helium star-neutron star merger that underwent a common envelope phase expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which gets thermalized by interacting with the dense, previously ejected material and thus creating the observed black-body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star io the Galax
GRB 110715A: The peculiar multiwavelength evolution of the first afterglow detected by ALMA
We present the extensive follow-up campaign on the afterglowof GRB 110715A at 17 different wavelengths, from X-ray to radio bands, starting 81 s after the burst and extending up to 74 d later.We performed for the first time aGRBafterglowobservationwith theALMAobservatory. We find that the afterglow of GRB 110715A is very bright at optical and radio wavelengths. We use the optical and near-infrared spectroscopy to provide further information about the progenitor's environment and its host galaxy. The spectrum shows weak absorption features at a redshift z = 0.8225, which reveal a host-galaxy environment with low ionization, column density, and dynamical activity. Late deep imaging shows a very faint galaxy, consistent with the spectroscopic results. The broad-band afterglow emission is modelled with synchrotron radiation using a numerical algorithm and we determine the best-fitting parameters using Bayesian inference in order to constrain the physical parameters of the jet and the medium in which the relativistic shock propagates. We fitted our data with a variety of models, including different density profiles and energy injections. Although the general behaviour can be roughly described by thesemodels, none of them are able to fully explain all data points simultaneously. GRB 110715A shows the complexity of reproducing extensive multiwavelength broad-band afterglow observations, and the need of good sampling in wavelength and time and more complex models to accurately constrain the physics of GRB afterglows. © 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society
Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium
ABSTRACT Background Advanced-stage mycosis fungoides (MF)/Sezary syndrome (SS) patients are weighted by an unfavorable prognosis and share an unmet clinical need of effective treatments. International guidelines are available detailing treatment options for the different stages but without recommending treatments in any particular order due to lack of comparative trials. The aims of this second CLIC study were to retrospectively analyze the pattern of care worldwide for advanced-stage MF/SS patients, the distribution of treatments according to geographical areas (USA versus non-USA), and whether the heterogeneity of approaches has potential impact on survival. Patients and methods This study included 853 patients from 21 specialist centers (14 European, 4 USA, 1 each Australian, Brazilian, and Japanese). Results Heterogeneity of treatment approaches was found, with up to 24 different modalities or combinations used as first-line and 36% of patients receiving four or more treatments. Stage IIB disease was most frequently treated by total-skin-electron-beam radiotherapy, bexarotene and gemcitabine; erythrodermic and SS patients by extracorporeal photochemotherapy, and stage IVA2 by polychemotherapy. Significant differences were found between USA and non-USA centers, with bexarotene, photopheresis and histone deacetylase inhibitors most frequently prescribed for first-line treatment in USA while phototherapy, interferon, chlorambucil and gemcitabine in non-USA centers. These differences did not significantly impact on survival. However, when considering death and therapy change as competing risk events and the impact of first treatment line on both events, both monochemotherapy (SHR = 2.07) and polychemotherapy (SHR = 1.69) showed elevated relative risks. Conclusion This large multicenter retrospective study shows that there exist a large treatment heterogeneity in advanced MF/SS and differences between USA and non-USA centers but these were not related to survival, while our data reveal that chemotherapy as first treatment is associated with a higher risk of death and/or change of therapy and thus other therapeutic options should be preferable as first treatment approach
The host of GRB 060206 : kinematics of a distant galaxy
Context. GRB afterglow spectra are sensitive probes of interstellar matter along the line-of-sight in their host galaxies, as well as in intervening galaxies. The rapid fading of GRBs makes it very difficult to obtain spectra of sufficient resolution and S/N to allow for these kinds of studies.
Aims. We investigate the state and properties of the interstellar medium in the host of GRB060206 at z = 4.048 with a detailed study of groundstate and finestructure absorption lines in an early afterglow spectrum. This allows us to derive conclusions on the nature and origin of the absorbing structures and their connection to the host galaxy and/or the GRB.
Methods. We used early (starting 1.6 h after the burst) WHT/ISIS optical spectroscopy of the afterglow of the gamma-ray burst GRB060206 detecting a range of metal absorption lines and their finestructure transitions. Additional information is provided by the afterglow lightcurve. The resolution and wavelength range of the spectra and the bright afterglow have facilitated a detailed study and
fitting of the absorption line systems in order to derive column densities. We also used deep imaging to detect the host galaxy and probe the nature of an intervening system at z = 1.48 seen in absorption in the afterglow spectra.
Results. We detect four discrete velocity systems in the resonant metal absorption lines, best explained by shells within and/or around the host created by starburst winds. The finestructure lines have no less than three components with strengths decreasing from the redmost components. We therefore suggest that the finestructure lines are best explained as being produced by UV pumping from which follows that the redmost component is the one closest to the burst where Nv was detected as well. The host is detected in deep HST imaging with F814WAB = 27.48 ± 0.19 mag and a 3σ upper limit of H = 20.6 mag (Vega) is achieved. A candidate counterpart for the intervening absorption system is detected as well, which is quite exceptional for an absorber in the sightline towards a GRB
afterglow. The intervening system shows no temporal evolution as claimed by Hao et al. (2007, ApJ, 659, 99), which we prove from our WHT spectra taken before and Subaru spectra taken during those observations
The host of GRB 060206: Kinematics of a distant galaxy
Context. GRB afterglow spectra are sensitive probes of interstellar matter along the line-of-sight in their host galaxies, as well as in intervening galaxies. The rapid fading of GRBs makes it very difficult to obtain spectra of sufficient resolution and S/N to allow for these kinds of studies.
Aims. We investigate the state and properties of the interstellar medium in the host of GRB 060206 at z= 4.048 with a detailed study of groundstate and finestructure absorption lines in an early afterglow spectrum. This allows us to derive conclusions on the nature and origin of the absorbing structures and their connection to the host galaxy and/or the GRB.
Methods. We used early (starting 1.6 h after the burst) WHT/ISIS optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 detecting a range of metal absorption lines and their finestructure transitions. Additional information is provided by the afterglow lightcurve. The resolution and wavelength range of the spectra and the bright afterglow have facilitated a detailed study and fitting of the absorption line systems in order to derive column densities. We also used deep imaging to detect the host galaxy and probe the nature of an intervening system at z = 1.48 seen in absorption in the afterglow spectra.
Results. We detect four discrete velocity systems in the resonant metal absorption lines, best explained by shells within and/or around the host created by starburst winds. The finestructure lines have no less than three components with strengths decreasing from the redmost components. We therefore suggest that the finestructure lines are best explained as being produced by UV pumping from which follows that the redmost component is the one closest to the burst where \ion{N}{v} was detected as well. The host is detected in deep HST imaging with F814WAB = 27.48 0.19 mag and a 3 upper limit of H = 20.6 mag (Vega) is achieved. A candidate counterpart for the intervening absorption system is detected as well, which is quite exceptional for an absorber in the sightline towards a GRB afterglow. The intervening system shows no temporal evolution as claimed by Hao et al. (2007, ApJ, 659, 99), which we prove from our WHT spectra taken before and Subaru spectra taken during those observations
The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33
Long γ-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae. They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the unusual GRB 101225A. Its γ-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy. © 2011 Macmillan Publishers Limited. All rights reserved
Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium
Advanced-stage mycosis fungoides (MF)/S\ue9zary syndrome (SS) patients are weighted by an unfavorable prognosis and share an unmet clinical need of effective treatments. International guidelines are available detailing treatment options for the different stages but without recommending treatments in any particular order due to lack of comparative trials. The aims of this second CLIC study were to retrospectively analyze the pattern of care worldwide for advanced-stage MF/SS patients, the distribution of treatments according to geographical areas (USA versus non-USA), and whether the heterogeneity of approaches has potential impact on survival