145 research outputs found
Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale
This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this concept. The specific objective of the present study was to determine whether VOCs are detectable after inoculation, and if so, to determine the time course of the concentrations of these compounds. To achieve this objective, we inoculated 60 greenhouse-grown tomato plants (Lycopersicon esculentum) with an aqueous suspension of Botrytis cinerea spores. Upon inoculation, the greenhouse air was sampled semi-continuously with a one hour time interval until 72 hours after inoculation (HAI). The samples were transferred to the laboratory and analysed using gas chromatography - mass spectrometry. Ten leaves were randomly selected to monitor the visible symptoms of infection. The severity of these visual symptoms was assessed at 0, 24, 48, and 72 HAI. Results demonstrated no detection of C6-compounds, and an almost constant concentration of all monoterpenes, most sesquiterpenes, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. However, the concentration of methyl salicylate increased 10-fold and 3-fold at 32 and 34 HAI respectively. At 24 HAI, 10% of the selected leaves showed mild symptoms while 20% of the selected leaves showed mild symptoms at 48 HAI. These results indicate that methyl salicylate might alert a grower of the presence of a B. cinerea infection of tomato plants at greenhouse scale. Further research is required to confirm these findings
Germination of Penicillium paneum Conidia Is Regulated by 1-Octen-3-ol, a Volatile Self-Inhibitor
Penicillium paneum is an important contaminant of cereal grains which is able to grow at low temperature, low pH, high levels of carbon dioxide, and under acid conditions. P. paneum produces mycotoxins, which may be harmful to animals and humans. We found that conidia in dense suspensions showed poor germination, suggesting the presence of a self-inhibitor. A volatile compound(s) produced by these high-density conditions also inhibited mycelial growth of different species of fungi belonging to a variety of genera, suggesting a broad action range. The heat-stable compound was isolated by successive centrifugation of the supernatant obtained from spore suspensions with a density of 10(9) conidia ml(-1). By using static headspace analyses, two major peaks were distinguished, with the highest production of these metabolites after 22 h of incubation at 25degreesC and shaking at 140 rpm. Gas chromatography coupled with mass spectra analysis revealed the compounds to be 3-octanone and 1-octen-3-ol. Notably, only the latter compound appeared to block the germination process at different developmental stages of the conidia (swelling and germ tube formation). In this study, 1-octen-3-ol influenced different developmental processes during the P. paneum life cycle, including induction of microcycle conidiation and inhibition of spore germination. Therefore, the compound can be considered a fungal hormone during fungal development
Why humans are attractive to malaria mosquitoes
Malaria mosquitoes use host odours to find their blood sources, but little is known about the semiochemicals that mediate this behaviour. A combined study is undertaken to identify the volatile human-specific compounds that are used in the host-seeking behaviour of the females of Anopheles gambia
- …