26 research outputs found

    Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    Get PDF
    BACKGROUND: Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. RESULTS: Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. CONCLUSION: Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity

    Risk factors for intracranial aneurysm rupture : A systematic review

    No full text
    BACKGROUND: Intracranial aneurysm rupture prediction is poor, with only a few risk factors for rupture identified and used in clinical practice. OBJECTIVE: To provide an overview of all the risk factors (including genetic, molecular, morphological, and hemodynamic factors) that have potential for use in clinical practice. METHODS: We systematically searched PubMed and EMBASE and focused on factors that can be easily assessed in clinical practice, might be used for rupture prediction in clinical practice, and/or are potential targets for further research. Studieswere categorized according to methodological quality, and a meta-analysis was performed, if possible. RESULTS: We included 102 studies describing 144 risk factors that fulfilled predefined criteria. There was strong evidence for the morphological factors irregular shape (studied in 4 prospective cohort studies of high-quality, pooled odds ratio [OR] of 4.8 [95% confidence interval 2.7-8.7]), aspect ratio (pooled OR 10.2 [4.3-24.6]), size ratio, bottleneck factor, and height-to-width ratio to increase rupture risk. Moderate level of evidence was found for presence of contact with the perianeurysmal environment (pooled OR 3.5 [1.4-8.4]), unbalanced nature of this contact (pooled OR 17.8 [8.3-38.5]), volume-to-ostium ratio, and direction of the aneurysm dome (pooled OR 1.5 [1.2-1.9]). CONCLUSION: Irregular aneurysm shape was identified as a risk factor with potential for use in clinical practice. The risk factors aspect ratio, size ratio, bottleneck factor, height-towidth ratio, contact with the perianeurysmal environment, volume-to-ostium ratio, and dome-direction should first be confirmed in multivariate analysis and incorporated in prediction models

    Zebrafish Tie-2 shares a redundant role with Tie-1 in heart development and regulates vessel integrity

    No full text
    Tie-2 is a member of the receptor tyrosine kinase family and is required for vascular remodeling and maintenance of mammalian vessel integrity. A number of mutations in the human TIE2 gene have been identified in patients suffering from cutaneomucosal venous malformations and ventricular septal defects. How exactly Tie-2 signaling pathways play different roles in both vascular development and vascular stability is unknown. We have generated a zebrafish line carrying a stop mutation in the kinase domain of the Tie-2 receptor. Mutant embryos lack Tie-2 protein, but do not display any defect in heart and vessel development. Simultaneous loss of Tie-1 and Tie-2, however, leads to a cardiac phenotype. Our study shows that Tie-1 and Tie-2 are not required for early heart development, yet they have redundant roles for the maintenance of endocardial-myocardial connection in later stages. Tie-2 and its ligand Angiopoietin-1 have also been reported to play an important role in vessel stability. We used atorvastatin and simvastatin, drugs that cause bleeding in wild-type zebrafish larvae, to challenge vessel stability in tie-2 mutants. Interestingly, recent clinical studies have reported hemorrhagic stroke as a side effect of atorvastatin treatment. Exposure of embryos to statins revealed that tie-2 mutants are significantly protected from statin-induced bleeding. Furthermore, tie-2 mutants became less resistant to bleeding after VE-cadherin knockdown. Taken together, these data show that atorvastatin affects vessel stability through Tie-2, and that VE-cadherin and Tie-2 act in concert to allow vessel remodeling while playing a role in vessel stability. Our study introduces an additional vertebrate model to study in vivo the function of Tie-2 in development and disease

    A novel infant milk formula concept: Mimicking the human milk fat globule structure

    Get PDF
    Human milk (HM) provides all nutrients to support an optimal growth and development of the neonate. The composition and structure of HM lipids, the most important energy provider, have an impact on the digestion, uptake and metabolism of lipids. In HM, the lipids are present in the form of dispersed fat globules: large fat droplets enveloped by a phospholipid membrane. Currently, infant milk formula (Control IMF) contains small fat droplets primarily coated by proteins. Recently, a novel IMF concept (Concept IMF) was developed with a different lipid architecture, Nuturis®, comprising large fat droplets with a phospholipid coating. Confocal laser scanning microscopy (CLSM), with appropriate fluorescent probes, and transmission electron microscopy were used to determine and compare the interfacial composition and structure of HM fat globules, Concept IMF fat droplets and Control IMF fat droplets. The presence of a trilayer-structured HM fat globule membrane, composed of phospholipids, proteins, glycoproteins and cholesterol, was confirmed; in addition exosome-like vesicles are observed within cytoplasmic crescents. The Control IMF fat droplets had a thick protein-only interface. The Concept IMF fat droplets showed a very thin interface composed of a mixture of phospholipids, proteins and cholesterol. Furthermore, the Concept IMF contained fragments of milk fat globule membrane, which has been suggested to have potential biological functions in infants. By mimicking more closely the structure and composition of HM fat globules, this novel IMF concept with Nuturis® may have metabolic and digestive properties that are more similar to HM compared to Control IMF

    Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms

    No full text
    Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured and 6 ruptured IA fundi were resected after microsurgical clipping and analyzed by correlative light microscopy for quantitative analysis (proportion of the vessel wall area) and transmission electron microscopy for qualitative ultrastructural analysis. Quantitative analysis revealed extensive internal elastic lamina (IEL) thickening in ruptured IA (36.3% ± 15%), while thin and fragmented IEL were common in unruptured IA (5.6% ± 7.1%). Macrophages were increased in ruptured IA (28.3 ± 24%) versus unruptured IA (2.7% ± 5.5%), as were leukocytes (12.85% ± 10% vs 0%). Vasa vasorum in ruptured but not in unruptured IA contained vast numbers of inflammatory cells and extravasation of these cells into the vessel wall. In conclusion, detection of thickened IEL, leaky vasa vasorum, and heavy inflammation as seen in ruptured IA in comparison to unruptured IA may identify aneurysms at risk of rupture, and management strategies preventing development of vasa vasorum or inflammation may reduce the risk of aneurysmal rupture

    Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms

    No full text
    Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured and 6 ruptured IA fundi were resected after microsurgical clipping and analyzed by correlative light microscopy for quantitative analysis (proportion of the vessel wall area) and transmission electron microscopy for qualitative ultrastructural analysis. Quantitative analysis revealed extensive internal elastic lamina (IEL) thickening in ruptured IA (36.3% ± 15%), while thin and fragmented IEL were common in unruptured IA (5.6% ± 7.1%). Macrophages were increased in ruptured IA (28.3 ± 24%) versus unruptured IA (2.7% ± 5.5%), as were leukocytes (12.85% ± 10% vs 0%). Vasa vasorum in ruptured but not in unruptured IA contained vast numbers of inflammatory cells and extravasation of these cells into the vessel wall. In conclusion, detection of thickened IEL, leaky vasa vasorum, and heavy inflammation as seen in ruptured IA in comparison to unruptured IA may identify aneurysms at risk of rupture, and management strategies preventing development of vasa vasorum or inflammation may reduce the risk of aneurysmal rupture

    Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms

    No full text
    Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured and 6 ruptured IA fundi were resected after microsurgical clipping and analyzed by correlative light microscopy for quantitative analysis (proportion of the vessel wall area) and transmission electron microscopy for qualitative ultrastructural analysis. Quantitative analysis revealed extensive internal elastic lamina (IEL) thickening in ruptured IA (36.3% ± 15%), while thin and fragmented IEL were common in unruptured IA (5.6% ± 7.1%). Macrophages were increased in ruptured IA (28.3 ± 24%) versus unruptured IA (2.7% ± 5.5%), as were leukocytes (12.85% ± 10% vs 0%). Vasa vasorum in ruptured but not in unruptured IA contained vast numbers of inflammatory cells and extravasation of these cells into the vessel wall. In conclusion, detection of thickened IEL, leaky vasa vasorum, and heavy inflammation as seen in ruptured IA in comparison to unruptured IA may identify aneurysms at risk of rupture, and management strategies preventing development of vasa vasorum or inflammation may reduce the risk of aneurysmal rupture
    corecore