381 research outputs found

    A study of alternative drive control interfaces for next-generation electric vehicles

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 59).The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle designs. This study examines alternative driving interfaces by prototyping controls for use with a driving simulator. Volunteers use these interfaces to drive simulated scenarios designed to isolate specific interface features that are intuitive and easy to use. These results are used to inform the design of a new interface which is also tested with the simulator. The simulation results are used to identify design elements of successful alternative driving interfaces.by C. Christopher Post.M.Eng

    Spatiotemporal Analysis of Soil Quality Degradation and Emissions in the State of Iowa (USA)

    Get PDF
    The concept of soil quality (SQ) is defined as the soil\u27s capacity to function, which is commonly assessed at the field scale. Soil quality is composed of inherent (soil suitability) and dynamic (soil health, SH) SQ, which can also be analyzed using geospatial tools as a SQ continuum (SQC). This study proposes an innovative spatiotemporal analysis of SQ degradation and emissions from land developments using the state of Iowa (IA) in the United States of America (USA) as a case study. The SQ degradation was linked to anthropogenic soil (SD) and land degradation (LD) in the state. More than 88% of land in IA experienced anthropogenic LD primarily due to agriculture (93%). All six soil orders were subject to various degrees of anthropogenic LD: Entisols (75%), Inceptisols (94%), Histosols (59%), Alfisols (79%), Mollisols (93%), and Vertisols (98%). Soil and LD have primarily increased between 2001 and 2016. In addition to agricultural LD, there was also SD/LD caused by an increase in developments often through urbanization. All land developments in IA can be linked to damages to SQ, with 8385.9 km2 of developed area, causing midpoint total soil carbon (TSC) losses of 1.7 × 1011 kg of C and an associated midpoint of social cost of carbon dioxide emissions (SC-CO2) of 28.8B(whereB=billion=109,USD).Morerecentlydevelopedlandarea(398.5km2)between2001and2016likelycausedthemidpointlossof8.0×109kgofCandacorrespondingmidpointof28.8B (where B = billion = 109, USD). More recently developed land area (398.5 km2) between 2001 and 2016 likely caused the midpoint loss of 8.0 × 109 kg of C and a corresponding midpoint of 1.3B in SC-CO2. New developments are often located near urban areas, for example, near the capital city of Des Moines, and other cities (Sioux City, Dubuque). Results of this study reveal several different kinds of SQ damage from developments: loss of potential for future C sequestration in soils, soil C loss, and “realized” soil C social costs (SC-CO2). The state of IA has very limited potential land (2.0% of the total state area) for nature-based solutions (NBS) to compensate for SD and LD. The results of this study can be used to support pending soil health-related legislation in IA and monitoring towards achieving the Sustainable Development Goals (SDGs) developed by the United Nations (UN) by providing a landscape-level perspective on LD to focus field-level initiatives to reduce soil loss and improve SQ. Future technological innovations will provide higher spatial and temporal remote sensing data that can be fused with field-level direct sensing to track SH and SQ changes

    Quantifying Damages to Soil Health and Emissions from Land Development in the State of Illinois (USA)

    Get PDF
    The concept of soil health is increasingly being used as an indicator for sustainable soil management and even includes legislative actions. Current applications of soil health often lack geospatial and monetary analyses of damages (e.g., land development), which can degrade soil health through loss of carbon (C) and productive soils. This study aims to evaluate the damages to soil health (e.g., soil C, the primary soil health indicator) attributed to land developments within the state of Illinois (IL) in the United States of America (USA). All land developments in IL can be associated with damages to soil health, with 13,361.0 km2 developed, resulting in midpoint losses of 2.5 × 1011 of total soil carbon (TSC) and a midpoint social cost of carbon dioxide emissions (SC-CO2) of 41.8B(whereB=billion=109,USD).Morerecentlydevelopedlandarea(721.8km2)between2001and2016likelycausedthemidpointlossof1.6×1010kgofTSCandacorrespondingmidpointof41.8B (where B = billion = 109, USD). More recently developed land area (721.8 km2) between 2001 and 2016 likely caused the midpoint loss of 1.6 × 1010 kg of TSC and a corresponding midpoint of 2.7B in SC-CO2. New developments occurred adjacent to current urban areas near the capital cities of Springfield, Chicago, and St. Louis (the border city between the states of Missouri and IL). Results of this study reveal several types of damage to soil health from developments: soil C loss, associated “realized” soil C social costs (SC-CO2), and loss of soil C sequestration potential from developments. The innovation of this study has several aspects. Geospatial analysis of land cover combined with corresponding soil types can identify changes in the soil health continuum at the landscape level. Because soil C is a primary soil health indicator, land conversions caused by developments reduce soil health and the availability of productive soils for agriculture, forestry, and C sequestration. Current IL soil health legislation can benefit from this landscape level data on soil C loss with GHG emissions and associated SC-CO2 costs by providing insight into the soil health continuum and its dynamics. These techniques and data can also be used to expand IL’s GHG emissions reduction efforts from being solely focused on the energy sector to include soil-based emissions from developments. Current soil health legislation does not recognize that soil’s health is harmed by disturbance from land developments and that this disturbance results in GHG emissions. Soil health programs could be broadened to encourage less disturbance of soil types that release high levels of GHG and set binding targets based on losses in the soil health continuum

    Climate Change Planning: Soil Carbon Regulating Ecosystem Services and Land Cover Change Analysis to Inform Disclosures for the State of Rhode Island, USA

    Get PDF
    The state of Rhode Island (RI) has established its greenhouse gas (GHG) emissions reduction goals, which require rapidly acquired and updatable science-based data to make these goals enforceable and effective. The combination of remote sensing and soil information data can estimate the past and model future GHG emissions because of conversion of “low disturbance” land covers (e.g., evergreen forest, hay/pasture) to “high disturbance” land covers (e.g., low-, medium-, and high-intensity developed land). These modeled future emissions can be used as a predevelopment potential GHG emissions information disclosure. This study demonstrates the rapid assessment of the value of regulating ecosystems services (ES) from soil organic carbon (SOC), soil inorganic carbon (SIC), and total soil carbon (TSC) stocks, based on the concept of the avoided social cost of carbon dioxide (CO2) emissions for RI by soil order and county using remote sensing and information from the State Soil Geographic (STATSGO) and Soil Survey Geographic Database (SSURGO) databases. Classified land cover data for 2001 and 2016 were downloaded from the Multi-Resolution Land Characteristics Consortium (MRLC) website. Obtained results provide accurate and quantitative spatio-temporal information about likely GHG emissions and show their patterns which are often associated with existing urban developments. These remote sensing tools could be used by the state of RI to both understand the nature of land cover change and likely GHG emissions from soil and to institute mandatory or voluntary predevelopment assessments and potential GHG emissions disclosures as a part of a climate mitigation policy

    Global Population Dynamics and Hot Spots of Response to Climate Change

    Get PDF
    Understanding how biotic and abiotic factors influence the abundance and distribution of organisms has become more important with the growing awareness of the ecological consequences of climate change. In this article, we outline an approach that complements bioclimatic envelope modeling in quantifying the effects of climate change at the species level. The global population dynamics approach, which relies on distribution-wide, data-driven analyses of dynamics, goes beyond quantifying biotic interactions in population dynamics to identify hot spots of response to climate change. Such hot spots highlight populations or locations within species\u27 distributions that are particularly sensitive to climate change, and identification of them should focus conservation and management efforts. An important result of the analyses highlighted here is pronounced variation at the species level in the strength and direction of population responses to warming. Although this variation complicates species-level predictions of responses to climate change, the global population dynamics approach may improve our understanding of the complex implications of climate change for species persistence or extinction

    Bacteria in Construction Site Sediment Basins

    Get PDF
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction

    Get PDF
    Background—Heart failure with preserved ejection fraction has a complex pathophysiology and remains a therapeutic challenge. Elevated left atrial pressure, particularly during exercise, is a key contributor to morbidity and mortality. Preliminary analyses have demonstrated that a novel interatrial septal shunt device that allows shunting to reduce the left atrial pressure provides clinical and hemodynamic benefit at 6 months. Given the chronicity of heart failure with preserved ejection fraction, evidence of longer-term benefit is required. Methods and Results—Patients (n=64) with left ventricular ejection fraction ≥40%, New York Heart Association class II–IV, elevated pulmonary capillary wedge pressure (≥15 mm Hg at rest or ≥25 mm Hg during supine bicycle exercise) participated in the open-label study of the interatrial septal shunt device. One year after interatrial septal shunt device implantation, there were sustained improvements in New York Heart Association class (P<0.001), quality of life (Minnesota Living with Heart Failure score, P<0.001), and 6-minute walk distance (P<0.01). Echocardiography showed a small, stable reduction in left ventricular end-diastolic volume index (P<0.001), with a concomitant small stable increase in the right ventricular end-diastolic volume index (P<0.001). Invasive hemodynamic studies performed in a subset of patients demonstrated a sustained reduction in the workload corrected exercise pulmonary capillary wedge pressure (P<0.01). Survival at 1 year was 95%, and there was no evidence of device-related complications. Conclusions—These results provide evidence of safety and sustained clinical benefit in heart failure with preserved ejection fraction patients 1 year after interatrial septal shunt device implantation. Randomized, blinded studies are underway to confirm these observations

    Resonant Andreev reflections in superconductor-carbon-nanotube devices

    Get PDF
    Resonant Andreev reflection through superconductor-carbon-nanotube devices was investigated theoretically with a focus on the superconducting proximity effect. Consistent with a recent experiment, we find that for high transparency devices on-resonance, the Andreev current is characterized by a large value and a resistance dip; low-transparency off-resonance devices give the opposite result. We also give evidence that the observed low-temperature transport anomaly may be a natural result of Andreev reflection process

    HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.

    Get PDF
    Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10-8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification
    • …
    corecore