140 research outputs found
High statistic measurement of the K- -> pi0 e- nu decay form-factors
The decay K- -> pi0 e- nu is studied using in-flight decays detected with the
ISTRA+ spectrometer. About 920K events are collected for the analysis. The
lambda+ slope parameter of the decay form-factor f+(t) in the linear
approximation (average slope) is measured: lambda+(lin)= 0.02774 +-
0.00047(stat) +- 0.00032(syst). The quadratic contribution to the form-factor
was estimated to be lambda'+ = 0.00084 +- 0.00027(stat) +- 0.00031(syst). The
linear slope, which has a meaning of df+(t)/dt|_{t=0} for this fit, is lambda+
= 0.02324 +- 0.00152(stat) +- 0.00032(syst). The limits on possible tensor and
scalar couplings are derived: f_{T}/f_{+}(0)=-0.012 +- 0.021(stat) +-
0.011$(syst), f_{S}/f_{+}(0)=-0.0037^{+0.0066}_{-0.0056}(stat) +- 0.0041(syst).Comment: 11 pages, 8 figures. Accepted by Phys.Lett.
Subcell resolution in simplex stochastic collocation for spatial discontinuities
Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive
uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC–SR method is based on
resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers’ equation, a shock tube problem, and the transonic flow over the RAE
2822 airfoil show that SSC–SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples
How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?
The coupling of the electromagnetic field to gravity is an age-old problem.
Presently, there is a resurgence of interest in it, mainly for two reasons: (i)
Experimental investigations are under way with ever increasing precision, be it
in the laboratory or by observing outer space. (ii) One desires to test out
alternatives to Einstein's gravitational theory, in particular those of a
gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity.
A clean discussion requires a reflection on the foundations of electrodynamics.
If one bases electrodynamics on the conservation laws of electric charge and
magnetic flux, one finds Maxwell's equations expressed in terms of the
excitation H=(D,H) and the field strength F=(E,B) without any intervention of
the metric or the linear connection of spacetime. In other words, there is
still no coupling to gravity. Only the constitutive law H= functional(F)
mediates such a coupling. We discuss the different ways of how metric,
nonmetricity, torsion, and curvature can come into play here. Along the way, we
touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld,
Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni),
and find a method for deriving the metric from linear electrodynamics (Toupin,
Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in
Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th
Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al.
(eds.). Springer, Berlin (2000) to be published (Revised version uses
Springer Latex macros; Sec. 6 substantially rewritten; appendices removed;
the list of references updated
Better evidence, better decisions, better environment: emergent themes from the first environmental evidence conference
The first international Collaboration for Environmental Evidence (CEE) conference took place in August 2016 at the Swedish Museum of Natural History in Stockholm with nearly 100 participants from 14 countries. This conference reflected and contributed to th
Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in \u3ci\u3eD374Y\u3c/i\u3e-PCSK9 Hypercholesterolemic Minipigs
Background—Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA).
Methods and Results—D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ~3-fold higher downstream of the SMS compared to both upstream of the SMS and in the control artery (pppp\u3c0.005).
Conclusions—These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of TCFA
A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …