482 research outputs found

    Assessing the molecular genetics of attention networks

    Get PDF
    BACKGROUND: Current efforts to study the genetic underpinnings of higher brain functions have been lacking appropriate phenotypes to describe cognition. One of the problems is that many cognitive concepts for which there is a single word (e.g. attention) have been shown to be related to several anatomical networks. Recently, we have developed an Attention Network Test (ANT) that provides a separate measure for each of three anatomically defined attention networks. RESULTS: In this study we have measured the efficiency of neural networks related to aspects of attention using the ANT in a population of 200 adult subjects. We then examined genetic polymorphisms in four candidate genes (DRD4, DAT, COMT and MAOA) that have been shown to contribute to the risk of developing various psychiatric disorders where attention is disrupted. We find modest associations of several polymorphisms with the efficiency of executive attention but not with overall performance measures such as reaction time. CONCLUSIONS: These results suggest that genetic variation may underlie inter-subject variation in the efficiency of executive attention. This study also shows that genetic influences on executive attention may be specific to certain anatomical networks rather than affecting performance in a global or non-specific manner. Lastly, this study further validates the ANT as an endophenotypic assay suitable for assessing how genes influence certain anatomical networks that may be disrupted in various psychiatric disorders

    Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    Full text link
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the Solar Energetic Particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary CME (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere

    Modeling the variations of Dose Rate measured by RAD during the first MSL Martian year: 2012-2014

    Get PDF
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, measures the {energy spectra} of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic ray (GCR) induced surface radiation dose concurrently: [a] short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, [b] long-term seasonal pressure changes in the Martian atmosphere, and [c] the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analysed and fitted to empirical models which quantitatively demonstrate} how the long-term influences ([b] and [c]) are related to the measured dose rates. {Correspondingly we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment

    Outcomes of Spatially Fractionated Radiotherapy (GRID) for Bulky Soft Tissue Sarcomas in a Large Animal Model

    Get PDF
    GRID directs alternating regions of high- and low-dose radiation at tumors. A large animal model mimicking the geometries of human treatments is needed to complement existing rodent systems (eg, microbeam) and clarify the physical and biological attributes of GRID. A pilot study was undertaken in pet dogs with spontaneous soft tissue sarcomas to characterize responses to GRID. Subjects were treated with either 20 Gy (3 dogs) or 25 Gy (3 dogs), delivered using 6 MV X-rays and a commercial GRID collimator. Acute toxicity and tumor responses were assessed 2, 4, and 6 weeks later. Acute Radiation Therapy Oncology Group grade I skin toxicity was observed in 3 of the 6 dogs; none experienced a measurable response, per Response Evaluation Criteria in Solid Tumors. Serum vascular endothelial growth factor, tumor necrosis factor α, and secretory sphingomyelinase were assayed at baseline, 1, 4, 24, and 48 hours after treatment. There was a trend toward platelet-corrected serum vascular endothelial growth factor concentration being lower 1 and 48 hours after GRID than at baseline. There was a significant decrease in secretory sphingomyelinase activity 48 hours after 25 Gy GRID (P = .03). Serum tumor necrosis factor α was quantified measurable at baseline in 4 of the 6 dogs and decreased in each of those subjects at all post-GRID time points. The new information generated by this study includes the observation that high-dose, single fraction application of GRID does not induce measurable reduction in volume of canine soft tissue sarcomas. In contrast to previously published data, these data suggest that GRID may be associated with at least short-term reduction in serum concentration of vascular endothelial growth factor and serum activity of secretory sphingomyelinase. Because GRID can be applied safely, and these tumors can be subsequently surgically resected as part of routine veterinary care, pet dogs with sarcomas are an appealing model for studying the radiobiologic responses to spatially fractionated radiotherapy

    Outcomes of Spatially Fractionated Radiotherapy (GRID) for Bulky Soft Tissue Sarcomas in a Large Animal Model

    Get PDF
    GRID directs alternating regions of high- and low-dose radiation at tumors. A large animal model mimicking the geometries of human treatments is needed to complement existing rodent systems (eg, microbeam) and clarify the physical and biological attributes of GRID. A pilot study was undertaken in pet dogs with spontaneous soft tissue sarcomas to characterize responses to GRID. Subjects were treated with either 20 Gy (3 dogs) or 25 Gy (3 dogs), delivered using 6 MV X-rays and a commercial GRID collimator. Acute toxicity and tumor responses were assessed 2, 4, and 6 weeks later. Acute Radiation Therapy Oncology Group grade I skin toxicity was observed in 3 of the 6 dogs; none experienced a measurable response, per Response Evaluation Criteria in Solid Tumors. Serum vascular endothelial growth factor, tumor necrosis factor α, and secretory sphingomyelinase were assayed at baseline, 1, 4, 24, and 48 hours after treatment. There was a trend toward platelet-corrected serum vascular endothelial growth factor concentration being lower 1 and 48 hours after GRID than at baseline. There was a significant decrease in secretory sphingomyelinase activity 48 hours after 25 Gy GRID (P = .03). Serum tumor necrosis factor α was quantified measurable at baseline in 4 of the 6 dogs and decreased in each of those subjects at all post-GRID time points. The new information generated by this study includes the observation that high-dose, single fraction application of GRID does not induce measurable reduction in volume of canine soft tissue sarcomas. In contrast to previously published data, these data suggest that GRID may be associated with at least short-term reduction in serum concentration of vascular endothelial growth factor and serum activity of secretory sphingomyelinase. Because GRID can be applied safely, and these tumors can be subsequently surgically resected as part of routine veterinary care, pet dogs with sarcomas are an appealing model for studying the radiobiologic responses to spatially fractionated radiotherapy

    Ethnicity, voter alignment and political party affiliation - an African case: Zambia

    Get PDF
    Conventional wisdom holds that ethnicity provides the social cleavage for voting behav-iour and party affiliation in Africa. Because this is usually inferred from aggregate data of national election results, it might prove to be an ecological fallacy. The evidence based on individual data from an opinion survey in Zambia suggests that ethnicity matters for voter alignment and even more so for party affiliation, but it is certainly not the only factor. The analysis also points to a number of qualifications which are partly methodology-related. One is that the degree of ethnic voting can differ from one ethno-political group to the other depending on various degrees of ethnic mobilisation. Another is that if smaller eth-nic groups or subgroups do not identify with one particular party, it is difficult to find a significant statistical correlation between party affiliation and ethnicity - but that does not prove that they do not affiliate along ethnic lines.Wahlverhalten und Mitgliedschaft in politischen Parteien Afrikas ist nur wenig untersucht worden. Gewöhnlich wird argumentiert, dass Ethnizität als soziale Konfliktlinie das Wahlverhalten und die Parteienmitgliedschaft strukturiert. Da dieses Argument auf hoch aggregierten Wahldaten beruht, kann hier ein ökologischer Fehlschuss vorliegen. Die vorliegende Analyse beruht deshalb auf individuellen Umfragedaten aus Sambia. Das Ergebnis ist, dass Ethnizität tatsächlich eine Rolle für das Wahlverhalten und die Parteienmitgliedschaft spielt, aber keineswegs den einzigen Erklärungsfaktor darstellt. Die Analyse offenbart zudem eine Reihe von Einschränkungen und Qualifizierungen, die teilweise methodischer Natur sind. Eine ist, dass ethnisches Wahlverhalten und Parteienmitgliedschaft von einer ethnischen Gruppe zur anderen unterschiedlich ist, dass, wenn sich kleinere ethnische Gruppen oder Untergruppen mit keiner Partei identifizieren, es schwierig wird, statistisch signifikante Korrelationen zu finden - was indessen noch nicht beweist, dass Ethnizität keine Rolle spielt

    Comparison of Martian Surface Radiation Predictions to the Measurements of Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    Get PDF
    For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

    Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Get PDF
    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenario
    • …
    corecore