3 research outputs found

    Rotavirus gene silencing by small interfering RNAs

    No full text
    RNA interference is an evolutionarily conserved double-stranded RNA-triggered mechanism for suppressing gene expression. Rotaviruses, the leading cause of severe diarrhea in young children, are formed by three concentric layers of protein, from which the spike protein VP4 projects. Here, we show that a small interfering RNA corresponding to the VP4 gene efficiently inhibits the synthesis of this protein in virus-infected cells. A large proportion of infected cells had no detectable VP4 and the yield of viral progeny was reduced. Most of the virus particles purified from these cells were triple-layered, but lacked VP4, and were poorly infectious. We also show that VP4 might not be required for the last step of virus morphogenesis. The VP4 gene silencing was specific, since the synthesis of VP4 from rotavirus strains that differ in the target sequence was not affected. These findings offer the possibility of carrying out reverse genetics in rotaviruses

    DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis*

    No full text
    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation
    corecore