81 research outputs found

    Ultrahigh magnetic field spectroscopy reveals the band structure of the 3D topological insulator Bi2_2Se3_3

    Full text link
    We have investigated the band structure at the Γ\Gamma point of the three-dimensional (3D) topological insulator Bi2_2Se3_3 using magneto-spectroscopy over a wide range of energies (0.55−2.20.55-2.2\,eV) and in ultrahigh magnetic fields up to 150\,T. At such high energies (E>0.6E>0.6\,eV) the parabolic approximation for the massive Dirac fermions breaks down and the Landau level dispersion becomes nonlinear. At even higher energies around 0.99 and 1.6 eV, new additional strong absorptions are observed with a temperature and magnetic-field dependence which suggest that they originate from higher band gaps. Spin orbit splittings for the further lying conduction and valence bands are found to be 0.196 and 0.264 eV

    Status of the BMV experiment

    Full text link
    In this contribution we present the status of the BMV experiment whose goal is to measure the vacuum magnetic birefringence

    High Field magnetospectroscopy to probe the 1.4eV Ni color center in diamond

    Full text link
    A magneto-optical study of the 1.4 eV Ni color center in boron-free synthetic diamond, grown at high pressure and high temperature, has been performed in magnetic fields up to 56 T. The data is interpreted using the effective spin Hamiltonian of Nazar\'e, Nevers and Davies [Phys. Rev. B 43, 14196 (1991)] for interstitial Ni+^{+} with the electronic configuration 3d93d^{9} and effective spin S=1/2S=1/2. Our results unequivocally demonstrate the trigonal symmetry of the defect which preferentially aligns along the [111] growth direction on the (111) face, but reveal the shortcomings of the crystal field model for this particular defect.Comment: 12 pages, 13 figures, submitted to PR

    Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking

    Full text link
    Often a modification of microscopic symmetry in a system can result in a dramatic change in its macroscopic properties. Here we report that symmetry breaking by a tube-threading magnetic field can drastically increase the photoluminescence quantum yield of semiconducting single-walled carbon nanotubes, by as much as a factor of six, at low temperatures. To explain this striking connection between seemingly unrelated properties, we have developed a comprehensive theoretical model based on magnetic-field-dependent one-dimensional exciton band structure and the interplay of strong Coulomb interactions and the Aharonov-Bohm effect. This conclusively explains our data as the first experimental observation of dark excitons 5-10 meV below the bright excitons in single-walled carbon nanotubes. We predict that this quantum yield increase can be made much larger in disorder-free samples

    Transport and magnetic properties of LT annealed Ga1-xMnxAs

    Full text link
    We present the results of low temperature (LT) annealing studies of Ga1-xMnxAs epilayers grown by low temperature molecular beam epitaxy in a wide range of Mn concentrations (0.01<x<0.084). Transport measurements in low and high magnetic fields as well as SQUID measurements were performed on a wide range of samples, serving to establish optimal conditions of annealing. Optimal annealing procedure succeeded in the Curie temperatures higher than 110K. The highest value of Curie temperature estimated from the maximum in the temperature dependence of zero-field resistivity (Tr) was 127K. It is generally observed that annealing leads to large changes in the magnetic and transport properties of GaMnAs in the very narrow range of annealing temperature close to the growth temperature.Comment: XXXI International School on the Physics of Semiconducting Compounds Jaszowiec 2002, will be published in Acta Physica Polonica

    Alignment Dynamics of Single-Walled Carbon Nanotubes in Pulsed Ultrahigh Magnetic Fields

    Full text link
    We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Due to their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. In order to explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.Comment: 20 pages, 6 figure

    Tuning the magnetic ground state of a novel tetranuclear Nickel(II) molecular complex by high magnetic fields

    Full text link
    Electron spin resonance and magnetization data in magnetic fields up to 55 T of a novel multicenter paramagnetic molecular complex [L_2Ni_4(N_3)(O_2C Ada)_4](Cl O_4) are reported. In this compound, four Ni centers each having a spin S = 1 are coupled in a single molecule via bridging ligands (including a \mu_4-azide) which provide paths for magnetic exchange. Analysis of the frequency and temperature dependence of the ESR signals yields the relevant parameters of the spin Hamiltonian, in particular the single ion anisotropy gap and the g factor, which enables the calculation of the complex energy spectrum of the spin states in a magnetic field. The experimental results give compelling evidence for tuning the ground state of the molecule by magnetic field from a nonmagnetic state at small fields to a magnetic one in strong fields owing to the spin level crossing at a field of ~25 T.Comment: revised version, accepted for publication in Physical Review
    • 

    corecore