11 research outputs found

    Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury.</p> <p>Methods</p> <p>Diabetic Goto-Kakizaki (GK) or control rats underwent 3 hours of middle cerebral artery occlusion and 21 h reperfusion followed by evaluation of infarct size, hemorrhage and neurological outcome.</p> <p>Results</p> <p>Infarct size was significantly smaller in GK rats (10 ± 2 vs 30 ± 4%, p < 0.001). There was significantly more frequent hematoma formation in the ischemic hemisphere in GK rats as opposed to controls. Cerebrovascular tortuosity index was increased in the GK model (1.13 ± 0.01 vs 1.34 ± 0.06, P < 0.001) indicative of changes in vessel architecture.</p> <p>Conclusion</p> <p>These findings provide evidence that there is cerebrovascular remodeling in diabetes. While diabetes-induced remodeling appears to prevent infarct expansion, these changes in blood vessels increase the risk for HT possibly exacerbating neurovascular damage due to cerebral ischemia/reperfusion in diabetes.</p

    A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination

    No full text
    Genome stability relies on faithful DNA repair both in mitosis and in meiosis. Here, we report on a Caenorhabditis elegans protein that we found to be homologous to the mammalian repair-related protein CtIP and to the budding yeast Com1/Sae2 recombination protein. A com-1 mutant displays normal meiotic chromosome pairing but forms irregular chromatin aggregates instead of diakinesis bivalents. While meiotic DNA double-strand breaks (DSBs) are formed, they appear to persist or undergo improper repair. Despite the presence of DSBs, the recombination protein RAD-51, which is known to associate with single-stranded DNA (ssDNA) flanking DSBs, does not localize to meiotic chromosomes in the com-1 mutant. Exposure of the mutant to γ-radiation, however, induces RAD-51 foci, which suggests that the failure of RAD-51 to load is specific to meiotic (SPO-11-generated) DSBs. These results suggest that C. elegans COM-1 plays a role in the generation of ssDNA tails that can load RAD-51, invade homologous DNA tracts and thereby initiate recombination. Extrapolating from the worm homolog, we expect similar phenotypes for mutations in the mammalian tumor suppressor CtIP

    The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis?

    No full text
    corecore