238 research outputs found

    A novel approach to improve GNSS Precise Point Positioning during strong ionospheric scintillation: theory and demonstration

    Get PDF
    At equatorial latitudes, ionospheric scintillation is the major limitation in achieving high-accuracy GNSS positioning. This is because scintillation affects the tracking ability of GNSS receivers causing losses of lock and degradation on code pseudorange and carrier phase measurements, thus degrading accuracy. During strong ionospheric scintillation, such effects are more severe and GNSS users cannot rely on the integrity, reliability, and availability required for safety-critical applications. In this paper, we propose a novel approach able to greatly reduce these effects of scintillation on precise point positioning (PPP). Our new approach consists of three steps: 1) a new functional model that corrects the effects of range errors in the observables; 2) a new stochastic model that uses these corrections to generate more accurate positioning; and 3) a new strategy to attenuate the effects of losses of lock and consequent ambiguities re-initializations that are caused by the need to re-initialize the tracking. We demonstrate the effectiveness of our method in an experiment using a 30-day static dataset affected by different levels of scintillation in the Brazilian southeastern region. Even with limitations imposed by data gaps, our results demonstrate improvements of up to 80% in the positioning accuracy. We show that, in the best cases, our method can completely negate the effects of ionospheric scintillation and can recover the original PPP accuracy that would have existed without any scintillation. The significance of this paper lies in the improvement it offers in the integrity, reliability, and availability of GNSS services and applications.</p

    Parmbsc1: a refined force field for DNA simulations

    Get PDF
    We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ~140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/

    Overturning established chemoselectivities : selective reduction of arenes over malonates and cyanoacetates by photoactivated organic electron donors

    Get PDF
    The prevalence of metal-based reducing reagents, including metals, metal complexes, and metal salts, has produced an empirical order of reactivity that governs our approach to chemical synthesis. However, this reactivity may be influenced by stabilization of transition states, intermediates, and products through substrate-metal bonding. This article reports that in the absence of such stabilizing interactions, established chemoselectivities can be overthrown. Thus, photoactivation of the recently developed neutral organic superelectron donor 5 selectively reduces alkyl-substituted benzene rings in the presence of activated esters and nitriles, in direct contrast to metal-based reductions, opening a new perspective on reactivity. The altered outcomes arising from the organic electron donors are attributed to selective interactions between the neutral organic donors and the arene rings of the substrates

    Oxidação da pirita e seus efeitos em argamassas de cimento Portland sujeitas ao ataque por sulfatos de origem interna

    Get PDF
    RESUMO O ataque por sulfatos de origem interna é resultante da reação química entre os íons Fe2+ e SO4 2-, provenientes da oxidação de agregados sulfetados, e os compostos da pasta cimentícia, e tende a promover a degradação do concreto devido formação de produtos expansivos que geram fissuração e desagregação do material. Neste trabalho, a morfologia da pirita, presente em alguns tipos de agregado, foi avaliada. O mineral foi utilizado em substituição parcial à areia (10%, em massa) na dosagem de argamassas, para estudo das modificações microestruturais e da variação dimensional linear sob envelhecimento natural durante 42 dias. A caracterização microestrutural foi executada em equipamento FEG/SEM com sonda analítica de EDS. Verificou-se, na superfície da pirita oxidada, a formação de óxidos de ferro, os quais afetaram a interface entre a pasta de cimento e o agregado nos materiais produzidos com a pirita. Quanto a variação dimensional, a argamassa apresentou apenas contrações durante o período de estudo. Verificou-se a ocorrência de fissuração e a predominância na formação de cristais aciculares de etringita aos 42 dias enquanto aos 90 dias a presença de gipsita predomina. Óxidos de ferro oriundos da oxidação da pirita são evidentes nas argamassas aos 90 dias

    ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing

    Get PDF
    A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research
    corecore