7 research outputs found

    Characterization of three new serous epithelial ovarian cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946).</p> <p>Methods</p> <p>In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice.</p> <p>Results</p> <p>While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic <it>TP53 </it>mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in <it>BRAF</it>, <it>KRAS </it>or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease.</p> <p>Conclusion</p> <p>This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient.</p

    Modeling the Diversity of Epithelial Ovarian Cancer through Ten Novel Well Characterized Cell Lines Covering Multiple Subtypes of the Disease

    No full text
    Cancer cell lines are amongst the most important pre-clinical models. In the context of epithelial ovarian cancer, a highly heterogeneous disease with diverse subtypes, it is paramount to study a wide panel of models in order to draw a representative picture of the disease. As this lethal gynaecological malignancy has seen little improvement in overall survival in the last decade, it is all the more pressing to support future research with robust and diverse study models. Here, we describe ten novel spontaneously immortalized patient-derived ovarian cancer cell lines, detailing their respective mutational profiles and gene/biomarker expression patterns, as well as their in vitro and in vivo growth characteristics. Eight of the cell lines were classified as high-grade serous, while two were determined to be of the rarer mucinous and clear cell subtypes, respectively. Each of the ten cell lines presents a panel of characteristics reflective of diverse clinically relevant phenomena, including chemotherapeutic resistance, metastatic potential, and subtype-associated mutations and gene/protein expression profiles. Importantly, four cell lines formed subcutaneous tumors in mice, a key characteristic for pre-clinical drug testing. Our work thus contributes significantly to the available models for the study of ovarian cancer, supplying additional tools to better understand this complex disease

    Characteristics and outcome of the COEUR Canadian validation cohort for ovarian cancer biomarkers

    Get PDF
    Background: Ovarian carcinoma is the most lethal gynecological malignancy due to early dissemination and acquired resistance to platinum-based chemotherapy. Reliable markers that are independent and complementary to clinical parameters are needed to improve the management of patients with this disease. The Canadian Ovarian Experimental Unified Resource (COEUR) provides researchers with biological material and associated clinical data to conduct biomarker validation studies. Using standards defined by the Canadian Tissue Repository Network (CTRNet), we have previously demonstrated the quality of the biological material from this resource. Here we describe the clinical characteristics of the COEUR cohort. Methods: With support from 12 Canadian ovarian cancer biobanks in Canada, we created a central retrospective cohort comprised of more than 2000 patient tissue samples with associated clinical data, including 1246 high-grade serous, 102 low-grade serous, 295 endometrioid, 259 clear cell and 89 mucinous carcinoma histotypes. A two-step reclassification process was applied to assure contemporary histological classification (histotyping). For each histotypes individually, we evaluated the association between the known clinico-pathological parameters (stage, cytoreduction, chemotherapy treatment, BRCA1 and BRCA2 mutation) and patient outcome by using Kaplan-Meier and Cox proportional hazard regression analyses. Results: The median follow-up time of the cohort was 45 months and the 5-year survival rate for patients with high-grade serous carcinomas was 34%, in contrast to endometrioid carcinomas with 80% at 5 years. Survival profiles differed by histotype when stratified by stage or cytoreduction. Women with mucinous or clear cell carcinomas at advanced stage or with non-optimally debulked disease had the worst outcomes. In high-grade serous carcinoma, we observed significant association with longer survival in women harboring BRCA1 or BRCA2 mutation as compared to patients without detectable mutation. Conclusions: Our results show the expected survival rates, as compared with current literature, in each histotype suggesting that the cohort is an unbiased representation of the five major histotypes. COEUR, a one stop comprehensive biorepository, has collected mature outcome data and relevant clinical data in a comprehensive manner allowing stratified analysis.Medicine, Faculty ofNon UBCObstetrics and Gynaecology, Department ofPathology and Laboratory Medicine, Department ofReviewedFacult
    corecore