151 research outputs found

    Characterization of three new serous epithelial ovarian cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946).</p> <p>Methods</p> <p>In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice.</p> <p>Results</p> <p>While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic <it>TP53 </it>mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in <it>BRAF</it>, <it>KRAS </it>or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease.</p> <p>Conclusion</p> <p>This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient.</p

    Absence of toxicity with hypofractionated 3-dimensional radiation therapy for inoperable, early stage non-small cell lung cancer

    Get PDF
    PURPOSE: Hypofractionated radiotherapy may overcome repopulation in rapidly proliferating tumors such as lung cancer. It is more convenient for the patients and reduces health care costs. This study reports our results on patients with medically inoperable, early stage, non-small cell lung cancer (NSCLC) treated with hypofractionation. MATERIALS AND METHODS: Stage T1-2N0 NSCLC patients were treated with hypofractionation alone, 52.5 Gy/15 fractions, in 3 weeks, with 3-dimensional conformal planning. T1-2N1 patients with the hilar lymphnode close to the primary tumor were also eligible for this treatment. We did not use any approach to reduce respiratory motion, but it was monitored in all patients. Elective nodal radiotherapy was not performed. Routine follow up included assessment for acute and late toxicity and radiological tumor response. Median follow up time was 29 months for the surviving patients. RESULTS: Thirty-two patients with a median age of 76 years, T1 = 15 and T2 = 17, were treated. Median planning target volume (PTV) volume was 150cc and median V16 of both lungs was 13%. The most important finding of this study is that toxicity was minimal. Two patients had grade ≤ 2 acute pneumonitis and 3 had mild (grade 1) acute esophagitis. There was no late toxicity. Actuarial 1 and 2-year overall survival rates are 78% and 56%, cancer specific survival rates (CSS) are 90% and 74%, and local relapse free survival rates are 93% and 76% respectively. CONCLUSION: 3-D planning, involved field hypofractionation at a dose of 52.5 Gy in 15 daily fractions is safe, well tolerated and easy radiation treatment for medically inoperable lung cancer patients. It shortens by half the traditional treatment. Results compare favorably with previously published studies. Further studies are needed to compare similar technique with other treatments such as surgery and stereotactic radiotherapy

    Intensity-Modulated Radiotherapy in Patients with Cervical Cancer. An intra-individual Comparison of Prone and Supine Positioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemoradiation for cervical cancer patients is associated with considerable gastrointestinal toxicity. Intensity-modulated radiotherapy (IMRT) has demonstrated superiority in terms of target coverage and normal tissue sparing in comparison to conventional 3D planning in gynaecological malignancies. Whether IMRT in prone (PP) or supine position (SP) might be beneficial for cervical cancer patients remains partially unanswered.</p> <p>Methods</p> <p>10 patients on FIGO stage IB-III cervical cancer, 6 patients for definitive and 4 patients for adjuvant external beam pelvic RT, were planned in PP and SP using a 7-field IMRT technique. IMRT plans for PP and SP (mean dose, D<sub>mean </sub>50.4 Gy) were optimized in terms of PTV coverage (1<sup>st </sup>priority) and small bowel sparing (2<sup>nd </sup>priority). A comparison of DVH parameters for PTV, small bowel, bladder, and rectum was performed.</p> <p>Results</p> <p>The comparison showed a similar PTV coverage of 95% of the prescribed dose and for target conformity in IMRT plans (PP, SP). PTV, rectum and bladder volumes were comparable for PP and SP. Significantly larger volumes of small bowel were found in PP (436 cc, + 35%, p = 0.01). PP decreased the volume of small bowel at 20-50.4 Gy (p < 0.05) and increased the rectum volumes covered by doses from 10-40 Gy (p < 0.01), the V50.4 was < 5% in both treatment positions. Bladder sparing was significant better at 50.4 Gy (p = 0.03) for PP.</p> <p>Conclusion</p> <p>In this dosimetric study, we demonstrated that pelvic IMRT in prone position for patients with cervical cancer seems to be beneficial in reducing small bowel volume at doses ≥20 Gy while providing similar target coverage and target conformity. The use of frequent image guidance with KV (kilovolt) or MV (megavolt) computertomography can reduce set-up deviations, and treatment in prone position can be done with a higher set-up accuracy. Clinical outcome studies are needed to affirm lower toxicity.</p
    • …
    corecore