22 research outputs found

    Loss of epithelial Gq and G11 signaling inhibits TGFβ production but promotes IL-33–mediated macrophage polarization and emphysema

    Get PDF
    Heterotrimeric guanine nucleotide–binding protein (G protein) signaling is a ubiquitous signaling system that links hundreds of G protein–coupled receptors (GPCRs) with four G protein signaling pathways. Two of these pathways, one mediated by Gq and G11 and the other by G12 and G13, are implicated in the force-dependent activation of transforming growth factor–β (TGFβ) in lung epithelial cells. Reduced TGFβ activation in alveolar cells leads to emphysema, whereas enhanced TGFβ activation promotes acute lung injury, and idiopathic pulmonary fibrosis, therefore precise control of alveolar TGFβ activation is essential for alveolar homeostasis. Here, we investigated whether the Gq/G11 or G12/G13 pathways in epithelial cells are required to generate TGFβ and suppress alveolar inflammation. Mice deficient in both Gαq and Gα11 developed inflammation primarily due to alternatively activated (M2-polarized) macrophages, enhanced production of matrix metalloprotease 12 (MMP12), and age-related alveolar airspace enlargement consistent with emphysema. We found that mice with impaired Gq/G11 signaling had reduced stretch-mediated generation of TGFβ by epithelial cells and elevated macrophage MMP12 synthesis, but were protected from the effects of ventilator-induced lung injury. Furthermore, synthesis of the pleiotropic cytokine interleukin-33 (IL-33), was increased in these alveolar epithelial cells resulting in the M2-type polarization of alveolar macrophages independently of the effect on TGFβ. Our results suggest that alveolar Gq/G11 signaling maintains alveolar homeostasis and is likely to independently upregulate mechanotransduced epithelial TGFβ activation and downregulate epithelial IL-33 synthesis. Together, these findings suggest that disruption of Gq/G11 signaling promotes inflammatory emphysema, but protects against mechanostransduced lung injury

    The Influence of Hepatic Steatosis and Fibrosis on Postoperative Outcomes After Major Liver Resection of Perihilar Cholangiocarcinoma

    Get PDF
    Background: Surgical resection for perihilar cholangiocarcinoma (pCCA) is associated with high operative risks. Impaired liver regeneration in patients with pre-existing liver disease may contribute to posthepatectomy liver failure (PHLF) and postoperative mortality. This study aimed to determine the incidence of hepatic steatosis and fibrosis and their association with PHLF and 90-day postoperative mortality in pCCA patients. Methods: Patients who underwent a major liver resection for pCCA were included in the study between 2000 and 2021 from three tertiary referral hospitals. Histopathologic assessment of hepatic steatosis and fibrosis was performed. The primary outcomes were PHLF and 90-day mortality. Results: Of the 401 included patients, steatosis was absent in 334 patients (83.3%), mild in 58 patients (14.5%) and moderate to severe in 9 patients (2.2%). There was no fibrosis in 92 patients (23.1%), periportal fibrosis in 150 patients (37.6%), septal fibrosis in 123 patients (30.8%), and biliary cirrhosis in 34 patients (8.5%). Steatosis (≥ 5%) was not associated with PHLF (odds ratio [OR] 1.36; 95% confidence interval [CI] 0.69–2.68) or 90-day mortality (OR 1.22; 95% CI 0.62–2.39). Neither was fibrosis (i.e., periportal, septal, or biliary cirrhosis) associated with PHLF (OR 0.76; 95% CI 0.41–1.41) or 90-day mortality (OR 0.60; 95% CI 0.33–1.06). The independent risk factors for PHLF were preoperative cholangitis (OR 2.38; 95% CI 1. 36–4.17) and future liver remnant smaller than 40% (OR 2.40; 95% CI 1.31–4.38). The independent risk factors for 90-day mortality were age of 65 years or older (OR 2.40; 95% CI 1.36–4.23) and preoperative cholangitis (OR 2.25; 95% CI 1.30–3.87). Conclusion: In this study, no association could be demonstrated between hepatic steatosis or fibrosis and postoperative outcomes after resection of pCCA.</p

    ?v?6 integrin may be a potential prognostic biomarker in interstitial lung disease

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) and fibrotic nonspecific interstitial pneumonitis are progressive interstitial lung diseases (ILDs) with limited treatment options and poor survival. However, the rate of disease progression is variable, implying there may be different endotypes of disease. We hypothesised that immunophenotyping biopsies from ILD patients might reveal distinct endotypes of progressive fibrotic disease, which may facilitate stratification when undertaking clinical trials of novel therapies for IPF.43 paraffin-embedded, formalin-fixed lung tissue sections were immunostained for five molecules implicated in the pathogenesis of the fibrosis: ?-smooth muscle actin (?SMA), ?v?6 integrin, pro-surfactant protein C (SP-C), hepatocyte growth factor (HGF) and tenascin-C (TenC). Levels of immunostaining and numbers of fibroblastic foci were quantified using operator-dependent and -independent methods. The relationship of all these markers to overall survival was analysed.Staining revealed high levels of ?SMA, ?v?6 integrin, pro-SP-C, HGF and TenC, and fibroblastic foci. Immunostaining varied across samples for all molecules but only the extent of ?v?6 integrin immunostaining was associated with increased mortality. There was no association with the other markers measured.Our data suggest high levels of ?v?6 integrin may identify a specific endotype of progressive fibrotic lung disease

    Influenza promotes collagen deposition via αvβ6 integrin-mediated transforming growth factor β activation.

    Get PDF
    Influenza infection exacerbates chronic pulmonary diseases, including idiopathic pulmonary fibrosis. A central pathway in the pathogenesis of idiopathic pulmonary fibrosis is epithelial injury leading to activation of transforming growth factor β (TGFβ). The mechanism and functional consequences of influenza-induced activation of epithelial TGFβ are unclear. Influenza stimulates toll-like receptor 3 (TLR3), which can increase RhoA activity, a key event prior to activation of TGFβ by the αvβ6 integrin. We hypothesized that influenza would stimulate TLR3 leading to activation of latent TGFβ via αvβ6 integrin in epithelial cells. Using H1152 (IC(50) 6.1 μm) to inhibit Rho kinase and 6.3G9 to inhibit αvβ6 integrins, we demonstrate their involvement in influenza (A/PR/8/34 H1N1) and poly(I:C)-induced TGFβ activation. We confirm the involvement of TLR3 in this process using chloroquine (IC(50) 11.9 μm) and a dominant negative TLR3 construct (pZERO-hTLR3). Examination of lungs from influenza-infected mice revealed augmented levels of collagen deposition, phosphorylated Smad2/3, αvβ6 integrin, and apoptotic cells. Finally, we demonstrate that αvβ6 integrin-mediated TGFβ activity following influenza infection promotes epithelial cell death in vitro and enhanced collagen deposition in vivo and that this response is diminished in Smad3 knock-out mice. These data show that H1N1 and poly(I:C) can induce αvβ6 integrin-dependent TGFβ activity in epithelial cells via stimulation of TLR3 and suggest a novel mechanism by which influenza infection may promote collagen deposition in fibrotic lung disease

    Lymph Node Micrometastases are Associated with Worse Survival in Patients with Otherwise Node-Negative Hilar Cholangiocarcinoma

    Get PDF
    Lymph node metastases on routine histology are a strong negative predictor for survival after resection of hilar cholangiocarcinoma. Additional immunohistochemistry can detect lymph node micrometastases in patients who are otherwise node negative, but the prognostic value is unsure. The objective of this study was to assess the effect on survival of immunohistochemically detected lymph node micrometastases in patients with node-negative (pN0) hilar cholangiocarcinoma on routine histology. Between 1990 and 2010, a total of 146 patients underwent curative-intent resection of hilar cholangiocarcinoma with regional lymphadenectomy at two university medical centers in the Netherlands. Ninety-one patients (62 %) without lymph node metastases at routine histology were included. Micrometastases were identified by multiple sectioning of all lymph nodes and additional immunostaining with an antibody against cytokeratin 19 (K19). The association with overall survival was assessed in univariable and multivariable analysis. Median follow-up was 48 months. Micrometastases were identified in 16 (5 %) of 324 lymph nodes, corresponding to 11 (12 %) of 91 patients. There were no differences in clinical variables between K19 lymph node-positive and -negative patients. Five-year survival rates in patients with lymph node micrometastases were significantly lower compared to patients without micrometastases (27 vs. 54 %, P = 0.01). Multivariable analysis confirmed micrometastases as an independent prognostic factor for survival (adjusted Hazard ratio 2.4, P = 0.02). Lymph node micrometastases are associated with worse survival after resection of hilar cholangiocarcinoma. Immunohistochemical detection of lymph node micrometastases leads to better staging of patients who were initially diagnosed with node-negative (pN0) hilar cholangiocarcinoma on routine histolog
    corecore