135 research outputs found

    5-fluorocytosine/isocytosine monohydrate. The first example of isomorphic and isostructural co-crystal of pyrimidine nucleobases

    Get PDF
    To date, despite the crucial role played by cytosine, uracil, and thymine in the DNA/RNA replication process, no examples showing isomorphic and isostructural behavior among binary co-crystals of natural or modified pyrimidine nucleobases have been so far reported in the literature. In view of the relevance of biochemical and pharmaceutical compounds such as pyrimidine nucleobases and their 5-fluoroderivatives, co-crystals of the molecular complex formed by 5-fluorocytosine and isocytosine monohydrate, C4H4FN3O·C4H5N3O·H2O, have been synthesized by a reaction between 5-fluorocytosine and isocytosine. They represent the first example of isomorphic and isostructural binary co-crystals of pyrimidine nucleobases, as X-ray diffraction analysis shows structural similarities in the solid-state organization of molecules with that of the (1:1) 5-fluorocytosine/5-fluoroisocytosine monohydrate molecular complex, which differs solely in the H/F substitution at the C5 position of isocytosine. Molecules of 5-fluorocytosine and isocytosine are present in the crystal as 1H and 3H-ketoamino tautomers, respectively. They form almost coplanar WC base pairs through nucleobase-to-nucleobase DAA/ADD hydrogen bonding interactions, demonstrating that complementary binding enables the crystallization of specific tautomers. Additional peripheral hydrogen bonds involving all available H atom donor and acceptor sites of the water molecule give a three-dimensional polymeric structure. In the absence of H· · · F hydrogen-bonding interactions, the robustness of the supramolecular architectures based on three-point recognition synthons is responsible for the existence of isostructurality between the two molecular complexes. © 2020 by the author. Licensee MDPI, Basel, Switzerland

    Solid-phase molecular recognition of cytosine based on proton-transfer reaction. Part II. supramolecular architecture in the cocrystals of cytosine and its 5-Fluoroderivative with 5-Nitrouracil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytosine is a biologically important compound owing to its natural occurrence as a component of nucleic acids. Cytosine plays a crucial role in DNA/RNA base pairing, through several hydrogen-bonding patterns, and controls the essential features of life as it is involved in genetic codon of 17 amino acids. The molecular recognition among cytosines, and the molecular heterosynthons of molecular salts fabricated through proton-transfer reactions, might be used to investigate the theoretical sites of cytosine-specific DNA-binding proteins and the design for molecular imprint.</p> <p>Results</p> <p>Reaction of cytosine (Cyt) and 5-fluorocytosine (5Fcyt) with 5-nitrouracil (Nit) in aqueous solution yielded two new products, which have been characterized by single-crystal X-ray diffraction. The products include a dihydrated molecular salt (CytNit) having both ionic and neutral hydrogen-bonded species, and a dihydrated cocrystal of neutral species (5FcytNit). In CytNit a protonated and an unprotonated cytosine form a triply hydrogen-bonded aggregate in a self-recognition ion-pair complex, and this dimer is then hydrogen bonded to one neutral and one anionic 5-nitrouracil molecule. In 5FcytNit the two neutral nucleobase derivatives are hydrogen bonded in pairs. In both structures conventional N-H<sup>...</sup>O, O-H<sup>...</sup>O, N-H<sup>+...</sup>N and N-H<sup>...</sup>N<sup>- </sup>intermolecular interactions are most significant in the structural assembly.</p> <p>Conclusion</p> <p>The supramolecular structure of the molecular adducts formed by cytosine and 5-fluorocytosine with 5-nitrouracil, CytNit and 5FcytNit, respectively, have been investigated in detail. CytNit and 5FcytNit exhibit widely differing hydrogen-bonding patterns, though both possess layered structures. The crystal structures of CytNit (D<it>p</it>k<sub>a </sub>= -0.7, molecular salt) and 5FcytNit (D<it>p</it>k<sub>a </sub>= -2.0, cocrystal) confirm that, at the present level of knowledge about the nature of proton-transfer process, there is not a strict correlation between the D<it>p</it>k<sub>a </sub>values and the proton transfer, in that the acid/base <it>p</it>k<sub>a </sub>strength is not a definite guide to predict the location of H atoms in the solid state. Eventually, the absence in 5FcytNit of hydrogen bonds involving fluorine is in agreement with findings that covalently bound fluorine hardly ever acts as acceptor for available Brønsted acidic sites in the presence of competing heteroatom acceptors.</p

    Structural studies of benzene derivatives. IX. The structures of p

    Full text link

    Patterns of CT lung injury and toxicity after stereotactic radiotherapy delivered with helical tomotherapy in early stage medically inoperable NSCLC

    Get PDF
    To evaluate toxicity and patterns of radiologic lung injury on CT images after hypofractionated image-guided stereotactic body radiotherapy (SBRT) delivered with helical tomotherapy (HT) in medically early stage inoperable non-small-cell lung cancer (NSCLC)

    Structural studies of benzene derivatives. XI. The structure of p

    Full text link

    Mitomycin-ifosfamide-cisplatinum (MIP) vs MIP-interferon vs cisplatinum-carboplatin in metastatic non-small-cell lung cancer: a FONICAP randomised phase II study. Italian Lung Cancer Task Force.

    Get PDF
    The FONICAP group is screening, with randomised phase II studies, the activity of new chemotherapy programmes for advanced non-small-cell lung cancer (NSCLC) looking for regimens with > 30% activity. In the present study, three regimens were tested: MIP (mitomycin 6 mg m-2, ifosfamide 3 g m-2, cisplatinum 80 mg m-2 on day 1 every 28 days); MIP-IFN (MIP and interferon alpha-2b 3 MU s.c. three times a week); and PC (cisplatinum 60 mg m-2 and carboplatin 400 mg m-2 on day 1 every 28 days). Overall 93 chemotherapy-naive patients were enrolled: 23 received MIP, 27 received MIP-IFN and 43 received PC. Eighty per cent of the patients had stage IV and 20% stage IIIb disease (positive pleural effusion or supraclavicular nodes). Response rates were as follows: MIP = 9% (95% CI 1-28%), MIP-IFN = 7% (95% CI 1-24%) and PC = 14% (95% CI 5-28%). The overall median survival was 183 days. Grade III-IV leucopenia was observed in 36% of patients treated with MIP-IFN vs 10% in the other two arms, and thrombocytopenia grade III-IV was reported in nearly 10% of patients overall. In conclusion, (1) all three regimens investigated have poor activity (< 30%); (2) when tested in multicentre randomised phase II trials, MIP displays lower activity than in phase II trials; (3) PC has similar activity to other platinum-containing regimens; (4) randomised phase II studies are a reliable and quick method of determining the anti-tumour activity of novel chemotherapeutic regimens in NSCLC

    Systemic Treatments for Mesothelioma: Standard and Novel

    Get PDF
    Systemic therapy is the only treatment option for the majority of mesothelioma patients, for whom age, co-morbid medical illnesses, non-epithelial histology, and locally advanced disease often preclude surgery. For many years, chemotherapy had a minimal impact on the natural history of this cancer, engendering considerable nihilism. Countless drugs were evaluated, most of which achieved response rates below 20% and median survival of <1 year. Several factors have hampered the evaluation of systemic regimens in patients with mesothelioma. The disease is uncommon, affecting only about 2500 Americans annually. Thus, most clinical trials are small, and randomized studies are challenging to accrue. There is significant heterogeneity within the patient populations of these small trials, for several reasons. Since all of the staging systems for mesothelioma are surgically based, it is almost impossible to accurately determine the stage of a patient who has not been resected. Patients with very early stage disease may be lumped together with far more advanced patients in the same study. The disease itself is heterogenous, with many different prognostic factors, most notably three pathologic subtypes—epithelial, sarcomatoid, and biphasic—that have different natural histories, and varying responses to treatment. Finally, response assessment is problematic, since pleural-based lesions are difficult to measure accurately and reproducibly. Assessment criteria often vary between trials, making some cross-trial comparisons difficult to interpret. Despite these limitations, in recent years, there has been a surge of optimism regarding systemic treatment of this disease. Several cytotoxic agents have been shown to generate reproducible responses, improve quality of life, or prolong survival in mesothelioma. Drugs with single-agent activity include pemetrexed, raltitrexed, vinorelbine, and vinflunine. The addition of pemetrexed or raltitrexed to cisplatin prolongs survival. The addition of cisplatin to pemetrexed, raltitrexed, gemcitabine, irinotecan, or vinorelbine improves response rate. The combination of pemetrexed plus cisplatin is considered the benchmark front-line regimen for this disease, based on a phase III trial in 456 patients that yielded a response rate of 41% and a median survival of 12.1 months. Vitamin supplementation with folic acid is essential to decrease toxicity, though recent data suggests that there may be an optimum dose of folic acid that should be administered; higher doses may diminish the effectiveness of pemetrexed. There are also several unresolved questions about the duration and timing of treatment with pemetrexed that are the subject of planned clinical trials. It is essential to recognize that the improvements observed with the pemetrexed/cisplatin combination, though real, are still modest. Other active drugs or drug combinations may be more appropriate for specific individuals, and further research is still needed to improve upon these results. Since the majority of mesotheliomas in the United States occur in the elderly, non-cisplatin-containing pemetrexed combinations may be more appropriate for some patients. Now that effective agents have been developed for initial treatment, several classical cytotoxic drugs and many novel agents are being evaluated in the second-line setting. These include drugs targeted against the epidermal growth factor, platelet-derived growth factor, vascular endothelial growth factor, src kinase, histone deacetylase, the proteasome, and mesothelin. Given the progress made in recent years, there is reason to believe that more effective treatments will continue to be developed
    corecore