5 research outputs found

    Convergence of all-order many-body methods: coupled-cluster study for Li

    Full text link
    We present and analyze results of the relativistic coupled-cluster calculation of energies, hyperfine constants, and dipole matrix elements for the 2s2s, 2p1/22p_{1/2}, and 2p3/22p_{3/2} states of Li atom. The calculations are complete through the fourth order of many-body perturbation theory for energies and through the fifth order for matrix elements and subsume certain chains of diagrams in all orders. A nearly complete many-body calculation allows us to draw conclusions on the convergence pattern of the coupled-cluster method. Our analysis suggests that the high-order many-body contributions to energies and matrix elements scale proportionally and provides a quantitative ground for semi-empirical fits of {\em ab inito} matrix elements to experimental energies.Comment: 4 pages, 3 figure

    Precision determination of electroweak coupling from atomic parity violation and implications for particle physics

    Full text link
    We carry out high-precision calculation of parity violation in cesium atom, reducing theoretical uncertainty by a factor of two compared to previous evaluations. We combine previous measurements with our calculations and extract the weak charge of the 133Cs nucleus, Q_W = -73.16(29)_exp(20)_th. The result is in agreement with the Standard Model (SM) of elementary particles. This is the most accurate to-date test of the low-energy electroweak sector of the SM. In combination with the results of high-energy collider experiments, we confirm the energy-dependence (or "running") of the electroweak force over an energy range spanning four orders of magnitude (from ~10 MeV to ~100 GeV). Additionally, our result places constraints on a variety of new physics scenarios beyond the SM. In particular, we increase the lower limit on the masses of extra ZZ-bosons predicted by models of grand unification and string theories.Comment: 4 pages/3 figs /1 tabl

    Standard Model tests with trapped radioactive atoms

    Full text link
    We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear β\beta decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved.Comment: 45 pages, 17 figures, v3 includes clarifying referee comments, especially in beta decay section, and updated figure
    corecore