3 research outputs found

    A Gaussian Theory of Superfluid--Bose-Glass Phase Transition

    Full text link
    We show that gaussian quantum fluctuations, even if infinitesimal, are sufficient to destroy the superfluidity of a disordered boson system in 1D and 2D. The critical disorder is thus finite no matter how small the repulsion is between particles. Within the gaussian approximation, we study the nature of the elementary excitations, including their density of states and mobility edge transition. We give the gaussian exponent η\eta at criticality in 1D and show that its ratio to η\eta of the pure system is universal.Comment: Revtex 3.0, 11 pages (4 figures will be sent through airmail upon request

    Ground State and Excitations of Disordered Boson Systems

    Full text link
    After an introduction to the dirty bosons problem, we present a gaussian theory for the ground state and excitations. This approach is physically equivalent to the Bogoliubov approximation. We find that ODLRO can be destroyed with sufficient disorder. The density of states and localization of the elementary excitations are discussed. (To appear in JLTP Proceedings of the Conference on Condensed Bose Systems at the University of Minnesota, 1993.)Comment: 13 pages. (postscript file because of the figures inserted in the text.
    corecore