3 research outputs found

    Dysregulated homeostasis of acetylcholine levels in immune cells of RR-multiple sclerosis patients

    Get PDF
    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNF alpha, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNF alpha, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis

    Profiling of Canonical and Non-Traditional Cytokine Levels in Interferon-β-Treated Relapsing–Remitting-Multiple Sclerosis Patients

    No full text
    BackgroundMultiple sclerosis (MS) is a chronic, progressive autoimmune disease of the central nervous system in which inflammation plays a key role in the induction, development, and progression. Most of the MS patients present with relapsing–remitting (RR) form, characterized by flare-ups followed by periods of recovery. Many inflammatory and anti-inflammatory cytokines have been proposed as backers in MS pathogenesis, and the balance between these differing cytokines can regulate MS severity. Interferon (IFN)-β, a current disease-modifying therapy for MS, has demonstrated beneficial effects in reducing disease severity in MS patients. However, its immunoregulatory and anti-inflammatory actions in MS are not wholly understood. The aim of the study was to define, in clinically stable patients with RR-MS, the serum concentration of several cytokines, canonical or not, and their modulation by IFN-β therapy.MethodsRelapsing–remitting-MS patients were enrolled and diagnosed according to revised Mc Donald Diagnostic Criteria. A set of cytokines [including non-canonical neurotransmitter acetylcholine (ACh) and adipokines] and B-cell differentiation molecules, as potential biomarkers, were evaluated in 30 non-treated RR-MS patients compared to 30 IFN-β-treated MS patients and 30 age, gender, and body mass index-matched healthy controls (HC).ResultsNaïve MS patients showed significantly higher levels of interleukin (IL)-1β, IL-12/IL-23p40, IL-18, high-mobility group box protein-1, and IL-18 binding protein (IL-18BP) than MS-treated patients (p < 0.001 for all) and HC (p < 0.01). IFN-β therapy has significantly downmodulated IL-1β, IL-12/IL-23p40, IL-18 to normal levels (p < 0.001), whereas it has decreased IL-18BP (p < 0.001). ACh was significantly higher in the IFN-β-treated than HC and non-treated MS patients (p < 0.001). No significant differences were observed either in adipokines concentration or in B-cell-associated molecules among the three study groups.ConclusionAlthough more experimental evidence are required, we speculate that the efficacy of treatment of MS with IFN-β is mediated, at least in part, by its ability to work on several levels to slow down the disease progression. Proposed actions include the modulation of IL-1–inflammasome axis and modulation of ACh, B-cell activating factor/a proliferation-inducing ligand system, and several adipokines
    corecore