977 research outputs found

    Using Pilot Systems to Execute Many Task Workloads on Supercomputers

    Full text link
    High performance computing systems have historically been designed to support applications comprised of mostly monolithic, single-job workloads. Pilot systems decouple workload specification, resource selection, and task execution via job placeholders and late-binding. Pilot systems help to satisfy the resource requirements of workloads comprised of multiple tasks. RADICAL-Pilot (RP) is a modular and extensible Python-based pilot system. In this paper we describe RP's design, architecture and implementation, and characterize its performance. RP is capable of spawning more than 100 tasks/second and supports the steady-state execution of up to 16K concurrent tasks. RP can be used stand-alone, as well as integrated with other application-level tools as a runtime system

    New Science on the Open Science Grid

    Get PDF
    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement and the distributed facility. As a partner to the poster and tutorial at SciDAC 2008, this paper gives both a brief general description and some specific examples of new science enabled on the OSG. More information is available at the OSG web site: (http://www.opensciencegrid.org)

    The health of prisoners: summary of NICE guidance

    Get PDF

    Beam instrumentation for the Tevatron Collider

    Full text link
    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders

    Adapting SAM for CDF

    Full text link
    The CDF and D0 experiments probe the high-energy frontier and as they do so have accumulated hundreds of Terabytes of data on the way to petabytes of data over the next two years. The experiments have made a commitment to use the developing Grid based on the SAM system to handle these data. The D0 SAM has been extended for use in CDF as common patterns of design emerged to meet the similar requirements of these experiments. The process by which the merger was achieved is explained with particular emphasis on lessons learned concerning the database design patterns plus realization of the use cases.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, pdf format, TUAT00
    • …
    corecore