18 research outputs found

    Exploiting teeth as a model to study basic features of signaling pathways

    Full text link
    Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization

    Physiology, Pathology and Regeneration of Salivary Glands

    Get PDF
    Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs

    Physiology, Pathology and Regeneration of Salivary Glands

    No full text
    Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs

    Notch in Head and Neck Cancer

    Full text link
    Head and neck cancer is a group of neoplastic diseases affecting the facial, oral, and neck region. It is one of the most common cancers worldwide with an aggressive, invasive evolution. Due to the heterogeneity of the tissues affected, it is particularly challenging to study the molecular mechanisms at the basis of these tumors, and to date we are still lacking accurate targets for prevention and therapy. The Notch signaling is involved in a variety of tumorigenic mechanisms, such as regulation of the tumor microenvironment, aberrant intercellular communication, and altered metabolism. Here, we provide an up-to-date review of the role of Notch in head and neck cancer and draw parallels with other types of solid tumors where the Notch pathway plays a crucial role in emergence, maintenance, and progression of the disease. We therefore give a perspective view on the importance of the pathway in neoplastic development in order to define future lines of research and novel therapeutic approaches

    Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment

    Get PDF
    Salivary gland tumors are neoplasms affecting the major and minor salivary glands of the oral cavity. Their complex pathological appearance and overlapping morphological features between subtypes, pose major challenges in the identification, classification, and staging of the tumor. Recently developed techniques of three-dimensional culture and organotypic modelling provide useful platforms for the clinical and biological characterization of these malignancies. Additionally, new advances in genetic and molecular screenings allow precise diagnosis and monitoring of tumor progression. Finally, novel therapeutic tools with increased efficiency and accuracy are emerging. In this review, we summarize the most common salivary gland neoplasms and provide an overview of the state-of-the-art tools to model, diagnose, and treat salivary gland tumors

    Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression

    Get PDF
    The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers

    New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas

    Full text link
    Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent types of cancer with a lethal outcome in half of the diagnosed cases. Mostly, HNSCC develops in the oral cavity, and its development is associated with tobacco and areca nut/betel quid usage, alcohol consumption, and HPV infection. Oral squamous cell carcinoma, as other head and neck cancers, presents a high degree of intratumor heterogeneity, which makes their treatment difficult, and directly correlates with drug resistance. Since the classical treatments for HNSCC oftentimes do not resolve the clinical picture, there is great need for novel therapeutic approaches, models for drug testing, and new drug delivery systems

    Three-Dimensional Imaging and Gene Expression Analysis Upon Enzymatic Isolation of the Tongue Epithelium

    Get PDF
    The tongue is a complex organ involved in a variety of functions such as mastication, speech, and taste sensory function. Enzymatic digestion techniques have been developed to allow the dissociation of the epithelium from the connective tissue of the tongue. However, it is not clear if the integrity and three-dimensional architecture of the isolated epithelium is preserved, and, furthermore if this tissue separation technique excludes its contamination from the mesenchymal tissue. Here, we first describe in detail the methodology of tongue epithelium isolation, and thereafter we analyzed the multicellular compartmentalization of the epithelium by three-dimensional fluorescent imaging and quantitative real-time PCR. Molecular characterization at both protein and transcript levels confirmed the exclusive expression of epithelial markers in the isolated epithelial compartment of the tongue. Confocal imaging analysis revealed that the integrity of the epithelium was not affected, even in the basal layer, where areas of active cell proliferations were detected. Therefore, the preservation of both the architecture and the molecular signature of the tongue epithelium upon enzymatic tissue separation enable further cellular, molecular and imaging studies on the physiology, pathology, and regeneration of the tongue
    corecore