123 research outputs found

    Workload accomplished in phase III cardiac rehabilitation

    Get PDF
    Exercise training is an important component of clinical exercise programs. Although there are recognized guidelines for the amount of exercise to be accomplished (≥70,000 steps per week or ≥150 min per week at moderate intensity), there is virtually no documentation of how much exercise is actually accomplished in contemporary exercise programs. Having guidelines without evidence of whether they are being met is of limited value. We analyzed both the weekly step count and the session rating of perceived exertion (sRPE) of patients (n = 26) enrolled in a community clinical exercise (e.g., Phase III) program over a 3-week reference period. Step counts averaged 39,818 ± 18,612 per week, with 18% of the steps accomplished in the program and 82% of steps accomplished outside the program. Using the sRPE method, inside the program, the patients averaged 162.4 ± 93.1 min per week, at a sRPE of 12.5 ± 1.9 and a frequency of 1.8 ± 0.7 times per week, for a calculated exercise load of 2042.5 ± 1244.9 AU. Outside the program, the patients averaged 144.9 ± 126.4 min, at a sRPE of 11.8 ± 5.8 and a frequency of 2.4 ± 1.5 times per week, for a calculated exercise load of 1723.9 ± 1526.2 AU. The total exercise load using sRPE was 266.4 ± 170.8 min per week, at a sRPE of 12.6 ± 3.8, and frequency of 4.2 ± 1.1 times per week, for a calculated exercise load of 3359.8 ± 2145.9 AU. There was a non-linear relationship between steps per week and the sRPE derived training load, apparently attributable to the amount of non-walking exercise accomplished in the program. The results suggest that patients in a community clinical exercise program are achieving American College of Sports Medicine guidelines, based on the sRPE method, but are accomplishing less steps than recommended by guidelines

    PREDICTORS OF UPHILL RIDING PERFORMANCE IN TRAINED CYCLISTS.

    Full text link

    Evidence That Rating of Perceived Exertion Growth During Fatiguing Tasks is Scalar and Independent of Exercise Mode

    Get PDF
    Introduction: The relationship between the percentage of a fatiguing ambulatory task completed and rating of perceived exertion (RPE) appears to be linear and scalar, with a relatively narrow “window.” Recent evidence has suggested that a similar relationship may exist for muscularly demanding tasks. Methods: To determine whether muscularly demanding tasks fit within this “ambulatory window,” we tested resistance-trained athletes performing bench press and leg press with different loadings predicted to allow 5, 10, 20, and 30 repetitions and measured RPE (category ratio scale) at the end of the concentric action for each repetition. Results: There was a regular, and strongly linear, pattern of growth of RPE for both bench press (r = .89) and leg press (r = .90) during the tasks that allowed 5.2 (1.2), 11.6 (1.9), 22.7 (2.0), and 30.8 (3.2) repetitions for bench press and 5.5 (1.5), 11.4 (1.6), 20.2 (3.0), and 32.4 (4.2) repetitions for leg press, respectively. Conclusions: The path of the RPE growth versus percentage task fit within the window evident for ambulatory tasks. The results suggest that the RPE versus percentage task completed relationship is scalar, relatively linear, and apparently independent of exercise mode

    Prediction of exercise capacity and training prescription from the 6-minute walk test and rating of perceived exertion

    Get PDF
    Walking tests, such as the 6-min walk test (6MWT), are popular methods of estimating peak oxygen uptake (VO(2)peak) in clinical populations. However, the strength of the distance vs. VO(2)peak relationship is not strong, and there are no equations for estimating ventilatory threshold (VT), which is important for training prescription and prognosis. Since the 6MWT is often limited by walking mechanics, prediction equations that include simple additional predictors, such as the terminal rating of perceived exertion (RPE), hold the potential for improving the prediction of VO(2)max and VT. Therefore, this study was designed to develop equations for predicting VO(2)peak and VT from performance during the 6MWT, on the basis of walking performance and terminal RPE. Clinically stable patients in a cardiac rehabilitation program (N = 63) performed the 6MWT according to the American Thoracic Society guidelines. At the end of each walk, the subject provided their terminal RPE on a 6–20 Borg scale. Each patient also performed a maximal incremental treadmill test with respiratory gas exchange to measure VO(2)peak and VT. There was a good correlation between VO(2)peak and 6MWT distance (r = 0.80) which was improved by adding the terminal RPE in a multiple regression formula (6MWT + RPE, R(2) = 0.71, standard error of estimate, SEE = 1.3 Metabolic Equivalents (METs). The VT was also well correlated with walking performance, 6MWT distance (r = 0.80), and was improved by the addition of terminal RPE (6MWT + RPE, R(2) = 0.69, SEE = 0.95 METs). The addition of terminal RPE to 6MWT distance improved the prediction of maximal METs and METs at VT, which may have practical applications for exercise prescription
    corecore