30 research outputs found

    Triangulation of gravitational wave sources with a network of detectors

    Get PDF
    There is significant benefit to be gained by pursuing multi-messenger astronomy with gravitational wave and electromagnetic observations. In order to undertake electromagnetic follow-ups of gravitational wave signals, it will be necessary to accurately localize them in the sky. Since gravitational wave detectors are not inherently pointing instruments, localization will occur primarily through triangulation with a network of detectors. We investigate the expected timing accuracy for observed signals and the consequences for localization. In addition, we discuss the effect of systematic uncertainties in the waveform and calibration of the instruments on the localization of sources. We provide illustrative results of timing and localization accuracy as well as systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure

    X-Pipeline: An analysis package for autonomous gravitational-wave burst searches

    Get PDF
    Autonomous gravitational-wave searches -- fully automated analyses of data that run without human intervention or assistance -- are desirable for a number of reasons. They are necessary for the rapid identification of gravitational-wave burst candidates, which in turn will allow for follow-up observations by other observatories and the maximum exploitation of their scientific potential. A fully automated analysis would also circumvent the traditional "by hand" setup and tuning of burst searches that is both labourious and time consuming. We demonstrate a fully automated search with X-Pipeline, a software package for the coherent analysis of data from networks of interferometers for detecting bursts associated with GRBs and other astrophysical triggers. We discuss the methods X-Pipeline uses for automated running, including background estimation, efficiency studies, unbiased optimal tuning of search thresholds, and prediction of upper limits. These are all done automatically via Monte Carlo with multiple independent data samples, and without requiring human intervention. As a demonstration of the power of this approach, we apply X-Pipeline to LIGO data to search for gravitational-wave emission associated with GRB 031108. We find that X-Pipeline is sensitive to signals approximately a factor of 2 weaker in amplitude than those detectable by the cross-correlation technique used in LIGO searches to date. We conclude with the prospects for running X-Pipeline as a fully autonomous, near real-time triggered burst search in the next LSC-Virgo Science Run.Comment: 18 pages, 10 figures. Minor edits and clarifications; added more background on gravitational waves and detectors. To appear in New Journal of Physics

    Measurement of the D+D^+- Meson Production Cross Section at Low Transverse Momentum in ppˉp\bar{p} Collisions at s=1.96\sqrt{s}=1.96 TeV

    No full text
    International audienceWe report on a measurement of the D+-meson production cross section as a function of transverse momentum (pT) in proton-antiproton (ppÂŻ) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10  fb-1 of integrated luminosity. We use D+→K-π+π+ decays fully reconstructed in the central rapidity region |y|<1 with transverse momentum down to 1.5  GeV/c, a range previously unexplored in ppÂŻ collisions. Inelastic ppÂŻ-scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K-π+π+ mass distribution is used to identify the D+ signal, and the D+ transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D+ signal of 2950 candidates corresponding to a total cross section σ(D+,1.5<pT<14.5  GeV/c,|y|<1)=71.9±6.8(stat)±9.3(syst)  Όb. While the measured cross sections are consistent with theoretical estimates in each pT bin, the shape of the observed pT spectrum is softer than the expectation from quantum chromodynamics. The results are unique in ppÂŻ collisions and can improve the shape and uncertainties of future predictions
    corecore