3,301 research outputs found

    The influence of microlensing on the shape of the AGN Fe K-alpha line

    Full text link
    We study the influence of gravitational microlensing on the AGN Fe K-alpha line confirming that unexpected enhancements recently detected in the iron line of some AGNs can be produced by this effect. We use a ray tracing method to study the influence of microlensing in the emission coming from a compact accretion disc considering both geometries, Schwarzschild and Kerr. Thanks to the small dimensions of the region producing the AGN Fe K-alpha line, the Einstein Ring Radii associated to even very small compact objects have size comparable to the accretion disc hence producing noticeable changes in the line profiles. Asymmetrical enhancements contributing differently to the peaks or to the core of the line are produced by a microlens, off-centered with respect to the accretion disc. In the standard configuration of microlensing by a compact object in an intervening galaxy, we found that the effects on the iron line are two orders of magnitude larger than those expected in the optical or UV emission lines. In particular, microlensing can satisfactorily explain the excess in the iron line emission found very recently in two gravitational lens systems, H 1413+117 and MG J0414+0534. Exploring other physical {scenario} for microlensing, we found that compact objects (of the order of one Solar mass) which belong to {the bulge or the halo} of the host galaxy can also produce significant changes in the Fe Kα_\alpha line profile of an AGN. However, the optical depth estimated for this type of microlensing is {very small, τ∼0.001\tau\sim 0.001, even in a favorable case.Comment: Astron. Astrophys. accepte

    Bipolar-Driven Large Magnetoresistance in Silicon

    Full text link
    Large linear magnetoresistance (MR) in electron-injected p-type silicon at very low magnetic field is observed experimentally at room temperature. The large linear MR is induced in electron-dominated space-charge transport regime, where the magnetic field modulation of electron-to-hole density ratio controls the MR, as indicated by the magnetic field dependence of Hall coefficient in the silicon device. Contrary to the space-charge-induced MR effect in unipolar silicon device, where the large linear MR is inhomogeneity-induced, our results provide a different insight into the mechanism of large linear MR in non-magnetic semiconductors that is not based on the inhomogeneity model. This approach enables homogeneous semiconductors to exhibit large linear MR at low magnetic fields that until now has only been appearing in semiconductors with strong inhomogeneities.Comment: 23 pages, 4 figures (main text), 6 figures (supplemental material

    Papillary muscle traction in mitral valve prolapse: Quantitation by two-dimensional echocardiography

    Get PDF
    Previous angiographic observations in patients with mitral valve prolapse have suggested that superior leaflet displacement results in abnormal superior tension on the papillary muscle tips that causes their superior traction or displacement. It has further been postulated that such tension can potentially affect the mechanical and electrophysiologic function of the left ventricle. The purpose of this study was to confirm and quantitate this phenomenon noninvasively by using two-dimensional echocardiography to determine whether superior displacement of the papillary muscle tips occurs and its relation to the degree of mitral leaflet displacement.Directed echocardiographic examination of the papillary muscles and mitral anulus was carried out in a series of patients with classic mitral valve prolapse and results were compared with those in a group of normal control subjects. Distance from the anulus to the papillary muscle tip was measured both in early and at peak ventricular systole. In normal subjects, this distance did not change significantly through systole, whereas in the patient group it decreased, corresponding to a superior displacement of the papillary muscle tips toward the anulus in systole (8.5 ± 2.6 vs. 0.8 ± 0.7 mm; p < 0.0001). This superior papillary muscle motion paralleled the superior displacement of the leaflets in individual patients (y = l.0x + 0.8; r = 0.93) and followed a similar time course. The systolic motion of the mitral anulus toward the apex, assessed with respect to a fixed external reference, was not significantly different in the patients and control groups (14.3 ± 4 vs. 15.5 ± 4.4 mm; p = 0.4) and therefore could not explain the superior papillary muscle tip motion relative to the anulus in the patients with mitral valve prolapse.These results demonstrate that normal mechanisms maintain a relatively constant distance between the papillary muscle tips and the mitral anulus during systole. In classic mitral valve prolapse, superior leaflet displacement is paralleled by superior displacement of the papillary muscles that is consistent with superiorly directed forces causing their traction. Two-dimensional echocardiography can therefore be used to measure these relations and test hypotheses as to their clinical correlates in patients with mitral valve prolapse

    Type Ia Supernova cosmology combining data from the EuclidEuclid mission and the Vera C. Rubin Observatory

    Full text link
    The EuclidEuclid mission will provide first-of-its-kind coverage in the near-infrared over deep (three fields, ∼\sim10-20 square degrees each) and wide (∼\sim10000 square degrees) fields. While the survey is not designed to discover transients, the deep fields will have repeated observations over a two-week span, followed by a gap of roughly six months. In this analysis, we explore how useful the deep field observations will be for measuring properties of Type Ia supernovae (SNe Ia). Using simulations that include EuclidEuclid's planned depth, area and cadence in the deep fields, we calculate that more than 3700 SNe between 0.0<z<1.50.0<z<1.5 will have at least five EuclidEuclid detections around peak with signal-to-noise ratio larger than 3. While on their own, EuclidEuclid light curves are not good enough to directly constrain distances, when combined with LSST deep field observations, we find that uncertainties on SN distances are reduced by 20-30% for z0.8z0.8. Furthermore, we predict how well additional EuclidEuclid mock data can be used to constrain a key systematic in SN Ia studies - the size of the luminosity 'step' found between SNe hosted in high mass (>1010M⊙>10^{10} M_{\odot}) and low mass (>1010M⊙>10^{10} M_{\odot}) galaxies. This measurement has unique information in the rest-frame NIR. We predict that if the step is caused by dust, we will be able to measure its reduction in the NIR compared to optical at the 4σ\sigma level. We highlight that the LSST and EuclidEuclid observing strategies used in this work are still provisional and some level of joint processing is required. Still, these first results are promising, and assuming EuclidEuclid begins observations well before the Nancy Roman Space Telescope (Roman), we expect this dataset to be extremely helpful for preparation for Roman itself

    Differences Between Hole and Electron Doping of a Two-Leg CuO Ladder

    Full text link
    Here we report results of a density-matrix-renormalization-group (DMRG) calculation of the charge, spin, and pairing properties of a two-leg CuO Hubbard ladder. The outer oxygen atoms as well as the rung and leg oxygen atoms are included along with near-neighbor and oxygen-hopping matrix elements. This system allows us to study the effects of hole and electron doping on a system which is a charge transfer insulator at a filling of one hole per Cu and exhibits power law, d-wave-like pairing correlations when doped. In particular, we focus on the differences between doping with holes or electrons.Comment: REVTEX 4, 10 pages, 13 figure

    A Topcolor Jungle Gym

    Get PDF
    We discuss an alternative to the topcolor seesaw mechanism. In our scheme, all the light quarks carry topcolor, and there are many composite SU(2) doublets. This makes it possible to get the observed top quark mass and observed SU(2)×U(1)SU(2) \times U(1) breaking in a way that is quite different from the classic seesaw mechanism. We discuss a model of this kind that arises naturally in the context of dynamically broken topcolor. There are many composite scalars in a theory of this kind. This has important effects on the Pagels-Stokar relation and the Higgs mass. We find mHiggs<330m_{\rm Higgs} < 330 GeV, lighter than in typical topcolor models. We also show that the electroweak singlet quarks in such a model can be lighter than the corresponding quarks in a seesaw model.Comment: 23 pages, LaTeX, uses epsf and psfi
    • …
    corecore