11,219 research outputs found

    Secularly growing loop corrections in strong electric fields

    Get PDF
    We calculate one--loop corrections to the vertexes and propagators of photons and charged particles in the strong electric field backgrounds. We use the Schwinger--Keldysh diagrammatic technique. We observe that photon's Keldysh propagator receives growing with time infrared contribution. As the result, loop corrections are not suppressed in comparison with tree--level contribution. This effect substantially changes the standard picture of the pair production. To sum up leading IR corrections from all loops we consider the infrared limit of the Dyson--Schwinger equations and reduce them to a single kinetic equation.Comment: 16 pages, no figures; Minor correction

    Extremely asymmetrical scattering in gratings with varying mean structural parameters

    Get PDF
    Extremely asymmetrical scattering (EAS) is an unusual type of Bragg scattering in slanted periodic gratings with the scattered wave (the +1 diffracted order) propagating parallel to the grating boundaries. Here, a unique and strong sensitivity of EAS to small stepwise variations of mean structural parameters at the grating boundaries is predicted theoretically (by means of approximate and rigorous analyses) for bulk TE electromagnetic waves and slab optical modes of arbitrary polarization in holographic (for bulk waves) and corrugation (for slab modes) gratings. The predicted effects are explained using one of the main physical reasons for EAS--the diffractional divergence of the scattered wave (similar to divergence of a laser beam). The approximate method of analysis is based on this understanding of the role of the divergence of the scattered wave, while the rigorous analysis uses the enhanced T-matrix algorithm. The effect of small and large stepwise variations of the mean permittivity at the grating boundaries is analysed. Two distinctly different and unusual patterns of EAS are predicted in the cases of wide and narrow (compared to a critical width) gratings. Comparison between the approximate and rigorous theories is carried out.Comment: 16 pages, 5 figure

    Inversionless gain in a three-level system driven by a strong field and collisions

    Get PDF
    Inversionless gain in a three-level system driven by a strong external field and by collisions with a buffer gas is investigated. The mechanism of populating of the upper laser level contributed by the collision transfer as well as by relaxation caused by a buffer gas is discussed in detail. Explicit formulae for analysis of optimal conditions are derived. The mechanism developed here for the incoherent pump could be generalized to other systems.Comment: RevTeX, 9 pages, 4 eps figure
    corecore