13,745 research outputs found

    Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields

    Full text link
    Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a zz-dependent electric field E(z)E(z) pointing in the zz-direction. We also allow for a smoothly varying magnetic field parallel to E(z)E(z). The result is applied to a confined field E(z)≠0E(z)\not=0 for ∣z∣≲ℓ|z|\lesssim \ell , a semi-confined field E(z)≠0E(z)\not=0 for z≳0 z\gtrsim 0 , and a linearly increasing field E(z)∼zE(z)\sim z. The boundary effects of the confined fields on pair-production rates are exhibited. A simple variable change in all formulas leads to results for electric fields depending on time rather than space. In addition, we discuss tunneling processes in which empty atomic bound states are spontaneously filled by negative-energy electrons from the vacuum under positron emission. In particular, we calculate the rate at which the atomic levels of a bare nucleus of finite size rnr_{\rm n} and large Z≫1Z\gg 1 are filled by spontaneous pair creation.Comment: 33 pages and 9 figures. to appear in Phys. Rev.

    The Zel'dovich effect and evolution of atomic Rydberg spectra along the Periodic Table

    Full text link
    In 1959 Ya. B. Zel'dovich predicted that the bound-state spectrum of the non-relativistic Coulomb problem distorted at small distances by a short-range potential undergoes a peculiar reconstruction whenever this potential alone supports a low-energy scattering resonance. However documented experimental evidence of this effect has been lacking. Previous theoretical studies of this phenomenon were confined to the regime where the range of the short-ranged potential is much smaller than Bohr's radius of the Coulomb field. We go beyond this limitation by restricting ourselves to highly-excited s states. This allows us to demonstrate that along the Periodic Table of elements the Zel'dovich effect manifests itself as systematic periodic variation of the Rydberg spectra with a period proportional to the cubic root of the atomic number. This dependence, which is supported by analysis of experimental and numerical data, has its origin in the binding properties of the ionic core of the atom.Comment: 17 pages, 12 figure

    Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transition with control fields

    Get PDF
    We show that atoms from wide velocity interval can be concurrently involved in Doppler-free two-photon resonant far from frequency degenerate four-wave mixing with the aid of auxiliary electromagnetic field. This gives rise to substantial enhancement of the output radiation generated in optically thick medium. Numerical illustrations addressed to typical experimental conditions are given.Comment: LaTeX2e, hyperref, 7 pages, 5 figures, to appear in PRA 1 august 200

    The Determination of the `Diffusion Coefficients' and the Stellar Wind Velocities for X-Ray Binaries

    Get PDF
    The distribution of neutron stars (NS's) is determined by stationary solution of the Fokker-Planck equation. In this work using the observed period changes for four systems: Vela X-1, GX 301-2, Her X-1 and Cen X-3 we determined D, the 'diffusion coefficient',-parameter from the Fokker-Planck equation. Using strong dependence of D on the velocity for Vela X-1 and GX 301-2, systems accreting from a stellar wind, we determined the stellar wind velocity. For different assumptions for a turbulent velocity we obtained V=(660−1440)kms−1V=(660-1440) km s ^{-1}. It is in good agreement with the stellar wind velocity determined by other methods. We also determined the specific characteristic time scales for the 'diffusion processes' in X-ray pulsars. It is of order of 200 sec for wind-fed pulsars and 1000-10000 sec for the disk accreting systems.Comment: 8 pages, Latex, no figures, accepted for publication to Astronomical and Astrophysical Transactions (1995). Admin note 20Feb2000: original (broken) version now paper.tex.orig in source; fixed version with two bad equations set in verbatim used for PS, paper.tex in sourc

    Schwinger Pair Creation of Particles and Strings

    Full text link
    I shortly review the worldline instanton method for calculating Schwinger pair production rates in (i) one-loop QED (ii) multiloop QED and (iii) one-loop open string theory.Comment: 8 pages, 3 figures, talk given at XIV Mexican School of Particles and Fields, November 8 - 12, 2010, Morelia, Mexico, to appear in the conference proceeding

    Improved Approximations for Fermion Pair Production in Inhomogeneous Electric Fields

    Get PDF
    Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter electric field E_0 sech^2 (z/L), and in a temporally localized electric field such as E_0 sech^2 (t/T). The integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum leads to the pair-production rate obtained by the worldline instanton method, including the prefactor, of Phys. Rev. D72, 105004 (2005) and D73, 065028 (2006). It is further shown that the WKB instanton action plus the next-to-leading order contribution in spinor QED equals the WKB instanton action in scalar QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions. Finally we obtain the pair-production rate in a spatially localized electric field together with a constant magnetic field in the same direction.Comment: RevTex, 12 pages, two figures; replaced by the version accepted in Phys. Rev.

    A young contracting white dwarf in the peculiar binary HD 49798/RX J0648.0--4418?

    Get PDF
    HD 49798/RX J0648.0--4418 is a peculiar X-ray binary with a hot subdwarf (sdO) mass donor. The nature of the accreting compact object is not known, but its spin period P=13.2P=13.2~s and P˙=−2.15×10−15\dot P =-2.15 \times 10^{-15}s~s−1^{-1}, prove that it can be only either a white dwarf or a neutron star. The spin-up has been very stable for more than 20 years. We demonstrate that the continuous stable spin-up of the compact companion of HD 49798 can be best explained by contraction of a young white dwarf with an age ∼2\sim 2~Myrs. This allows us to interpret all the basic parameters of the system in the framework of an accreting white dwarf. We present examples of binary evolution which result in such systems. If correct, this is the first direct evidence for a white dwarf contraction on early evolutionary stages.Comment: 9 pages, accepted to MNRA
    • …
    corecore