238 research outputs found

    Development of a polymer endovascular prosthesis and its implantation in porcine arteries

    Get PDF
    A polyethylene-terephthalate braided mesh stent has been developed for application in the (coronary) arterial tree. In vitro measurements showed that the radial pressure delivered by this device was in the same range as that of a stainless steel stent. Hysteresis-like behavior, however, occurred after constraining the polyester stent for a period of only 15 minutes on a delivery system for percutaneous implantation. This implies that the polymer stent must be mounted on this delivery system immediately before the placement procedure, and that either a diameter in the unconstrained condition must be selected, which is considerably larger than the diameter of the target vessel, or stent expansion has to be enhanced by balloon expansion. Taking into account the results obtained during the in vitro studies, we investigated the angiographic patency and histologic features after implantation of this polyester stent in peripheral arteries of pigs. In four animals eight stents were placed. Except for heparin during the implantation procedure only, antithrombotic or antiplatelet drugs were not administered. After 4 weeks repeat angiography was performed. Angiography revealed that five of the six correctly placed stents were patent. At autopsy, two additional patent stents proved to be located in the aortic bifurcation, probably due to failure of the delivery system. Quantitative assessment showed that the mean luminal diameters of the site of stent placement were 3.3 +/- 0.2 mm before, 3.2 +/- 0.2 mm immediately after, and 3.1 +/- 0.3 mm at 4 weeks after implantation. Histology demonstrated an inflammatory reaction of variable severity around the stent fibers. Quantitative histologic measurements showed that the thickness of the neointima was 114 +/- 38 mum after 4 weeks. In conclusion, polyester stents can be constructed with mechanical properties similar to stainless steel stents. Hysteresis-like behavior of polyester stents, however, influences the selection of the nominal stent diameter as well as the forces exerted to the vessel wall. After implantation in porcine peripheral arteries, five of six correctly placed stents were patent at 4 weeks. The extent of neointimal proliferation was similar to that observed after placement of metal stents in swine, despite the presence of a more pronounced inflammatory reaction

    Predicting In Vivo Efficacy of Potential Restenosis Therapies by Cell Culture Studies: Species-Dependent Susceptibility of Vascular Smooth Muscle Cells

    Get PDF
    Although drug-eluting stents (DES) are successfully utilized for restenosis therapy, the development of local and systemic therapeutic means including nanoparticles (NP) continues. Lack of correlation between in vitro and in vivo studies is one of the major drawbacks in developing new drug delivery systems. The present study was designed to examine the applicability of the arterial explant outgrowth model, and of smooth muscle cells (SMC) cultures for prescreening of possible drugs. Elucidation of different species sensitivity (rat, rabbit, porcine and human) to diverse drugs (tyrphostins, heparin and bisphsophonates) and a delivery system (nanoparticles) could provide a valuable screening tool for further in vivo studies. The anticipated sensitivity ranking from the explant outgrowth model and SMC mitotic rates (porcine>rat>>rabbit>human) do not correlate with the observed relative sensitivity of those animals to antiproliferative therapy in restenosis models (rat≄rabbit>porcine>human). Similarly, the inhibitory profile of the various antirestenotic drugs in SMC cultures (rabbit>porcine>rat>>human) do not correlate with animal studies, the rabbit- and porcine-derived SMC being highly sensitive. The validity of in vitro culture studies for the screening of controlled release delivery systems such as nanoparticles is limited. It is suggested that prescreening studies of possible drug candidates for restenosis therapy should include both SMC cell cultures of rat and human, appropriately designed with a suitable serum

    Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review

    Get PDF
    There is mounting evidence that pulmonary arterial hypertension (PAH), asthma and chronic obstructive pulmonary disease (COPD) share important pathological features, including inflammation, smooth muscle contraction and remodeling. No existing drug provides the combined potential advantages of reducing vascular- and bronchial-constriction, and anti-inflammation. Vasoactive intestinal peptide (VIP) is widely expressed throughout the cardiopulmonary system and exerts a variety of biological actions, including potent vascular and airway dilatory actions, potent anti-inflammatory actions, improving blood circulation to the heart and lung, and modulation of airway secretions. VIP has emerged as a promising drug candidate for the treatment of cardiopulmonary disorders such as PAH, asthma, and COPD. Clinical application of VIP has been limited in the past for a number of reasons, including its short plasma half-life and difficulty in administration routes. The development of long-acting VIP analogues, in combination with appropriate drug delivery systems, may provide clinically useful agents for the treatment of PAH, asthma, and COPD. This article reviews the physiological significance of VIP in cardiopulmonary system and the therapeutic potential of VIP-based agents in the treatment of pulmonary diseases
    • 

    corecore