292 research outputs found
Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity
We derive the equilibrium hydrostatic equation of a spherical star for any
gravitational Lagrangian density of the form . The Palatini
variational principle for the Helmholtz Lagrangian in the Einstein gauge is
used to obtain the field equations in this gauge. The equilibrium hydrostatic
equation is obtained and is used to study the Newtonian limit for
. The same procedure is carried out for the more
generally case giving a good
Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity
Towards a Relativistic Description of Exotic Meson Decays
This work analyses hadronic decays of exotic mesons, with a focus on the
lightest one, the , in a fully relativistic formalism,
and makes comparisons with non-relativistic results. We also discuss Coulomb
gauge decays of normal mesons that proceed through their hybrid components. The
relativistic spin wave functions of mesons and hybrids are constructed based on
unitary representations of the Lorentz group. The radial wave functions are
obtained from phenomenological considerations of the mass operator. Fully
relativistic results (with Wigner rotations) differ significantly from
non-relativistic ones. We also find that the decay channels are favored, in agreement with results obtained using
other models.Comment: 14 pages, 7 figure
Covariant conservation of energy momentum in modified gravities
An explicit proof of the vanishing of the covariant divergence of the
energy-momentum tensor in modified theories of gravity is presented. The
gravitational action is written in arbitrary dimensions and allowed to depend
nonlinearly on the curvature scalar and its couplings with a scalar field. Also
the case of a function of the curvature scalar multiplying a matter Lagrangian
is considered. The proof is given both in the metric and in the first-order
formalism, i.e. under the Palatini variational principle. It is found that the
covariant conservation of energy-momentum is built-in to the field equations.
This crucial result, called the generalized Bianchi identity, can also be
deduced directly from the covariance of the extended gravitational action.
Furthermore, we demonstrate that in all of these cases, the freely falling
world lines are determined by the field equations alone and turn out to be the
geodesics associated with the metric compatible connection. The independent
connection in the Palatini formulation of these generalized theories does not
have a similar direct physical interpretation. However, in the conformal
Einstein frame a certain bi-metricity emerges into the structure of these
theories. In the light of our interpretation of the independent connection as
an auxiliary variable we can also reconsider some criticisms of the Palatini
formulation originally raised by Buchdahl.Comment: 8 pages. v2: more discussio
Modified gravity and its reconstruction from the universe expansion history
We develop the reconstruction program for the number of modified gravities:
scalar-tensor theory, , and string-inspired, scalar-Gauss-Bonnet
gravity. The known (classical) universe expansion history is used for the
explicit and successful reconstruction of some versions (of special form or
with specific potentials) from all above modified gravities. It is demonstrated
that cosmological sequence of matter dominance, decceleration-acceleration
transition and acceleration era may always emerge as cosmological solutions of
such theory. Moreover, the late-time dark energy FRW universe may have the
approximate or exact CDM form consistent with three years WMAP data.
The principal possibility to extend this reconstruction scheme to include the
radiation dominated era and inflation is briefly mentioned. Finally, it is
indicated how even modified gravity which does not describe the
matter-dominated epoch may have such a solution before acceleration era at the
price of the introduction of compensating dark energy.Comment: LaTeX file, 24 pages, no figure, prepared for the proceedings of ERE
2006, minor correction
Learning-dependent chromatin remodeling highlights noncoding regulatory regions linked to autism
High-throughput sequencing analysis of learning-induced epigenetic changes in the mouse hippocampus reveals regulatory regions relevant to autism.</jats:p
- …