36 research outputs found

    Accumulation of microglial cells expressing ELR motif-positive CXC chemokines and their receptor CXCR2 in monkey hippocampus after ischemia-reparfusion

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博甲第1801号, 学位授与年月日 : 平成18年9月28日, 学位授与大学 : 金沢大学, 主査教授 : 須田 貴司, 副査教授 : 濱田 潤一郎, 東田 陽

    Crucial Involvement of the CCR2/CCL2 Interactions in Azoxymethane/Dextran Sodium Sulfate-induced Colon Carcinogenesis in Mice

    Get PDF
    Azoxymethane (AOM) administration followed by repetitive dextran sulfate sodium (DSS) ingestion causes chronic colonic inflammation with macrophage infiltration and enhanced expression of a macrophage-tropic chemokine, CCL2, in wild-type (WT) mice. These mice eventually develop multiple colon tumors. In contrast, mice deficient in CCR2, a specific receptor for CCL2, exhibited less macrophage infiltration and attenuated tumor formation. WT mice transplanted with CCR2-deficient bone marrow developed fewer tumors after AOM and DSS treatment than either WT or CCR2-deficient mice transplanted with WT bone marrow. Furthermore, when injected to WT mice with multiple colon tumors, a CCL2 antagonist expression vector attenuated macrophage and granulocyte infiltration, and eventually reduced the numbers and sizes of tumors. These results implied the crucial involvement of the CCL2-CCR2 interactions in the development and progression of colon carcinoma associated with chronic inflammation

    Tumor necrosis factor (TNF) and chemokines in colitis-associated cancer

    Get PDF
    The connection between inflammation and tumorigenesis has been well established, based on a great deal of supporting evidence obtained from epidemiological, pharmacological, and genetic studies. One representative example is inflammatory bowel disease, because it is an important risk factor for the development of colon cancer. Moreover, intratumoral infiltration of inflammatory cells suggests the involvement of inflammatory responses also in other forms of sporadic as well as heritable colon cancer. Inflammatory responses and tumorigenesis activate similar sets of transcription factors such as NF-κB, Stat3, and hypoxia inducible factor and eventually enhances the expression of inflammatory cytokines including tumor necrosis factor (TNF) and chemokines. The expression of TNF and chemokines is aberrantly expressed in a mouse model of colitis-associated carcinogenesis as well as in inflammatory bowel disease and colon cancer in humans. Here, after summarizing the presumed actions of TNF and chemokines in tumor biology, we will discuss the potential roles of TNF and chemokines in chronic inflammation-associated colon cancer in mice. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    Activation of epidermal growth factor receptor signaling by the prostaglandin E2 receptor EP4 pathway during gastric tumorigenesis

    Get PDF
    金沢大学がん進展制御研究所Cyclooxygenase-2 (COX-2) plays an important role in tumorigenesis through prostaglandin E2 (PGE2) biosynthesis. It has been shown by in vitro studies that PGE2 signaling transactivates epidermal growth factor receptor (EGFR) through an intracellular mechanism. However, the mechanisms underlying PGE2-induced EGFR activation in in vivo tumors are still not fully understood. We previously constructed transgenic mice that develop gastric tumors caused by oncogenic activation and PGE2 pathway induction. Importantly, expression of EGFR ligands, epiregulin, amphiregulin, heparin-binding EGF-like growth factor, and betacellulin, as well as a disintegrin and metalloproteinases (ADAMs), ADAM8, ADAM9, ADAM10, and ADAM17 were significantly increased in the mouse gastric tumors in a PGE2 pathway-dependent manner. These ADAMs can activate EGFR by ectodomain shedding of EGFR ligands. Notably, the extensive induction of EGFR ligands and ADAMs was suppressed by inhibition of the PGE2 receptor EP4. Moreover, EP4 signaling induced expression of amphiregulin and epiregulin in activated macrophages, whereas EP4 pathway was required for basal expression of epiregulin in gastric epithelial cells. In contrast, ADAMs were not induced directly by PGE2 in these cells, suggesting indirect mechanism possibly through PGE2-associated inflammatory responses. These results suggest that PGE2 signaling through EP4 activates EGFR in gastric tumors through global induction of EGFR ligands and ADAMs in several cell types either by direct or indirect mechanism. Importantly, gastric tumorigenesis of the transgenic mice was significantly suppressed by combination treatment with EGFR and COX-2 inhibitors. Therefore, it is possible that inhibition of both COX-2/PGE2 and EGFR pathways represents an effective strategy for preventing gastric cancer. © 2011 Japanese Cancer Association

    Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines

    Get PDF
    金沢大学がん研究所がん病態制御Most cases of human hepatocellular carcinoma develop after persistent chronic infection with human hepatitis B virus or hepatitis C virus, and host responses are presumed to have major roles in this process. To recapitulate this process, we have developed the mouse model of hepatocellular carcinoma using hepatitis B virus surface antigen transgenic mice. To identify the genes associated with hepatocarcinogenesis in this model, we compared the gene expression patterns between pre-malignant lesions surrounded by hepatocellular carcinoma tissues and control liver tissues by using a fluorescent differential display analysis. Among the genes that were expressed differentially in the pre-malignant lesions, we focused on Pim-3, a member of a proto-oncogene Pim family, because its contribution to hepatocarcinogenesis remains unknown. Moreover, the unavailability of the nucleotide sequence of full-length human Pim-3 cDNA prompted us to clone it from the cDNA library constructed from a human hepatoma cell line, HepG2. The obtained 2,392 bp human Pim-3 cDNA encodes a predicted open reading frame consisting of 326 amino acids. Pim-3 mRNA was selectively expressed in human hepatoma cell lines, but not in normal liver tissues. Moreover, Pim-3 protein was detected in human hepatocellular carcinoma tissues and cell lines but not in normal hepatocytes. Furthermore, cell proliferation was attenuated and apoptosis was enhanced in human hepatoma cell lines by the ablation of Pim-3 gene with RNA interference. These observations suggest that aberrantly expressed Pim-3 can cause autonomous cell proliferation or prevent apoptosis in hepatoma cell lines. © 2004 Wiley-Liss, Inc

    Proto-oncogene, Pim-3 with serine/threonine kinase activity, is aberrantly expressed in human colon cancer cells and can prevent Bad-mediated apoptosis

    Get PDF
    金沢大学がん研究所がん病態制御We previously observed that Pim-3 with serine/threonine kinase activity, was aberrantly expressed in malignant lesions of endoderm-derived organs, liver and pancreas. Because Pim-3 protein was not detected in normal colon mucosal tissues, we evaluated Pim-3 expression in malignant lesions of human colon, another endoderm-derived organ. Pim-3 was detected immunohistochemically in well-differentiated (43/68 cases) and moderately differentiated (23/41 cases) but not poorly differentiated colon adenocarcinomas (0/5 cases). Moreover, Pim-3 proteins were detected in adenoma (35/40 cases) and normal mucosa (26/111 cases), which are adjacent to adenocarcinoma. Pim-3 was constitutively expressed in SW480 cells and the transfection with Pim-3 short hairpin RNA promoted apoptosis. In the same cell line, a pro-apoptotic molecule, Bad, was phosphorylated at Ser112 and Ser 136 sites of phosphorylation that are representative of its inactive form. Ser112 but not Ser136 phosphorylation in this cell line was abrogated by Pim-3 knockdown. Furthermore, in human colon cancer tissues, Pim-3 co-localized with Bad in all cases (9/9) and with phospho-Ser112 Bad in most cases (6/9). These observations suggest that Pim-3 can inactivate Bad by phosphorylating its Ser112 in human colon cancer cells and thus may prevent apoptosis and promote progression of human colon cancer. © 2007 Japanese Cancer Association

    Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors

    Get PDF
    金沢大学がん研究所Background & Aims Helicobacter pylori infection induces an inflammatory response, which can contribute to gastric tumorigenesis. Induction of cyclooxygenase-2 (COX-2) results in production of prostaglandin E2 (PGE2), which mediates inflammation. We investigated the roles of bacterial infection and PGE2 signaling in gastric tumorigenesis in mice. Methods We generated a germfree (GF) colony of K19-Wnt1/C2mE mice (Gan mice); these mice develop gastric cancer. We examined tumor phenotypes, expression of cytokines and chemokines, and recruitment of macrophages. We also investigated PGE2 signaling through the PGE2 receptor subtype 4 (EP4) in Gan mice given specific inhibitors. Results Gan mice raised in a specific pathogen-free facility developed large gastric tumors, whereas gastric tumorigenesis was significantly suppressed in GF-Gan mice; reconstitution of commensal flora or infection with Helicobacter felis induced gastric tumor development in these mice. Macrophage infiltration was significantly suppressed in the stomachs of GF-Gan mice. Gan mice given an EP4 inhibitor had decreased expression of cytokines and chemokines. PGE2 signaling and bacterial infection or stimulation with lipopolysaccharide induced expression of the chemokine C-C motif ligand 2 (CCL2) (which attracts macrophage) in tumor stromal cells or cultured macrophages, respectively. CCL2 inhibition suppressed macrophage infiltration in tumors, and depletion of macrophages from the tumors of Gan mice led to signs of tumor regression. Wnt signaling was suppressed in the tumors of GF-Gan and Gan mice given injections of tumor necrosis factor-α neutralizing antibody. Conclusions Bacterial infection and PGE2 signaling are required for gastric tumorigenesis in mice; they cooperate to up-regulate CCL2, which recruits macrophage to gastric tumors. Macrophage-derived tumor necrosis factor-α promotes Wnt signaling in epithelial cells, which contributes to gastric tumorigenesis. © 2011 AGA Institute

    Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice

    Get PDF
    金沢大学がん研究所がん病態制御Accumulating evidence indicates the crucial contribution of chronic inflammation to various types of carcinogenesis, including colon carcinoma associated with ulcerative colitis and asbestosis-induced malignant mesothelioma. Ulcerative colitis-associated colon carcinogenesis can be recapitulated in mice by azoxymethane administration followed by repetitive dextran sulfate sodium ingestion. In the course of this carcinogenesis process, the expression of a macrophage-tropic chemokine, CCL2, was enhanced together with intracolonic massive infiltration of macrophages, which were a major source of cyclooxygenase (COX)-2, a crucial mediator of colon carcinogenesis. Mice deficient in CCL2-specific receptor, CCR2, exhibited less macrophage infiltration and lower tumor numbers with attenuated COX-2 expression. Moreover, CCL2 antagonists decreased intracolonic macrophage infiltration and COX-2 expression, attenuated neovascularization, and eventually reduced the numbers and size of colon tumors, even when given after multiple colon tumors have developed. These observations identify CCL2 as a crucial mediator of the initiation and progression of chronic colitis-associated colon carcinogenesis and suggest that targeting CCL2 may be useful in treating colon cancers, particularly those associated with chronic inflammation. ©2009 American Association for Cancer Research

    Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis

    Get PDF
    金沢大学がん研究所がん病態制御The inflammatory bowel disease ulcerative colitis (UC) frequently progresses to colon cancer. To understand the mechanisms by which UC patients develop colon carcinomas, we used a mouse model of the disease whereby administration of azoxymethane (AOM) followed by repeated dextran sulfate sodium (DSS) ingestion causes severe colonic inflammation and the subsequent development of multiple tumors. We found that treating WT mice with AOM and DSS increased TNF-α expression and the number of infiltrating leukocytes expressing its major receptor, p55 (TNF-Rp55), in the lamina propria and submucosal regions of the colon. This was followed by the development of multiple colonic tumors. Mice lacking TNF-Rp55 and treated with AOM and DSS showed reduced mucosal damage, reduced infiltration of macrophages and neutrophils, and attenuated subsequent tumor formation. WT mice transplanted with TNF-Rp55-deficient bone marrow also developed significantly fewer tumors after AOM and DSS treatment than either WT mice or TNF-Rp55-deficient mice transplanted with WT bone marrow. Furthermore, administration of etanercept, a specific antagonist of TNF-α, to WT mice after treatment with AOM and DSS markedly reduced the number and size of tumors and reduced colonic infiltration by neutrophils and macrophages. These observations identify TNF-α as a crucial mediator of the initiation and progression of colitis-associated colon carcinogenesis and suggest that targeting TNF-α may be useful in treating colon cancer in individuals with UC
    corecore