533 research outputs found

    A BRST Analysis of WW-symmetries

    Get PDF
    We perform a classical BRST analysis of the symmetries corresponding to a generic wNw_N-algebra. An essential feature of our method is that we write the wNw_N-algebra in a special basis such that the algebra manifestly has a ``nested'' set of subalgebras vNNvNN1vN2wNv_N^N \subset v_N^{N-1} \subset \dots \subset v_N^2 \equiv w_N where the subalgebra vNi (i=2,,N)v_N^i\ (i=2, \dots ,N) consists of generators of spin s={i,i+1,,N}s=\{i,i+1,\dots ,N\}, respectively. In the new basis the BRST charge can be written as a ``nested'' sum of N1N-1 nilpotent BRST charges. In view of potential applications to (critical and/or non-critical) WW-string theories we discuss the quantum extension of our results. In particular, we present the quantum BRST-operator for the W4W_4-algebra in the new basis. For both critical and non-critical WW-strings we apply our results to discuss the relation with minimal models.Comment: 32 pages, UG-4/9

    Relationship between Tumor Enhancement, Edema, IDH1

    Full text link
    Background and purposeBoth IDH1 mutation and MGMT promoter methylation are associated with longer survival. We investigated the ability of imaging correlates to serve as noninvasive biomarkers for these molecularly defined GBM subtypes.Materials and methodsMR imaging from 202 patients with GBM was retrospectively assessed for nonenhancing tumor and edema among other imaging features. IDH1 mutational and MGMT promoter methylation status were determined by DNA sequencing and methylation-specific PCR, respectively. Overall survival was determined by using a multivariate Cox model and the Kaplan-Meier method with a log rank test. A logistic regression model followed by ROC analysis was used to classify the IDH1 mutation and methylation status by using imaging features.ResultsMGMT promoter methylation and IDH1 mutation were associated with longer median survival. Edema levels stratified survival for methylated but not unmethylated tumors. Median survival for methylated tumors with little/no edema was 2476 days (95% CI, 795), compared with 586 days (95% CI, 507-654) for unmethylated tumors or tumors with edema. All IDH1 mutant tumors were nCET positive, and most (11/14, 79%) were located in the frontal lobe. Imaging features including larger tumor size and nCET could be used to determine IDH1 mutational status with 97.5% accuracy, but poorly predicted MGMT promoter methylation.ConclusionsImaging features are potentially predictive of IDH1 mutational status but were poorly correlated with MGMT promoter methylation. Edema stratifies survival in MGMT promoter methylated but not in unmethylated tumors; patients with methylated tumors with little or no edema have particularly long survival

    Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    Get PDF
    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961–1990) demonstrated the models’ skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961–1990) and future (2071–2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future’ weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region

    Multipartite Entanglement and Quantum State Exchange

    Get PDF
    We investigate multipartite entanglement in relation to the theoretical process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a novel measure called the entanglement of minimum bipartite entropy.Comment: 12 pages, 4 figure

    Persistent Diffusion-Restricted Lesions in Bevacizumab-Treated Malignant Gliomas Are Associated with Improved Survival Compared with Matched Controls

    Full text link
    Background and purposeA subset of patients with malignant glioma develops conspicuous lesions characterized by persistent restricted diffusion during treatment with bevacizumab. The purpose of the current study was to characterize the evolution of these lesions and to determine their relationship to patient outcome.Materials and methodsTwenty patients with malignant glioma with persistent restricted-diffusion lesions undergoing treatment with bevacizumab were included in the current study. Mean ADC and the volume of restricted diffusion were computed for each patient during serial follow-up. Differences in TTP, TTS, and OS were compared between patients with restricted diffusion and matched controls by using Kaplan-Meier analysis with the logrank test and Cox hazard models.ResultsMean ADC values were generally stable with time (mean, 5.2 ± 12.6% change from baseline). The volume of restricted diffusion increased a median of 23% from baseline by 6 months. Patients with restricted-diffusion lesions had significantly greater TTP (logrank, P = .013), TTS (logrank, P = .008), and OS (logrank, P = .010) than matched controls. When available, advanced physiologic imaging of restricted-diffusion lesions showed hypovascularity on perfusion MR imaging and decreased amino acid uptake on (18)F-FDOPA PET scans. Atypical gelatinous necrotic tissue was confirmed in the area of restricted diffusion in 1 patient.ConclusionsRestricted-diffusion lesions in malignant gliomas treated with bevacizumab are generally stable with time and are associated with improved outcomes. These results combined with physiologic imaging and histopathologic data suggest that these lesions are not consistent with aggressive tumor

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA

    Get PDF
    Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
    corecore