9 research outputs found
Recommended from our members
Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie
Keep off the grass?:Cannabis, cognition and addiction
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.In an increasing number of states and countries, cannabis now stands poised to join alcohol and tobacco as a legal drug. Quantifying the relative adverse and beneficial effects of cannabis and its constituent cannabinoids should therefore be prioritized. Whereas newspaper headlines have focused on links between cannabis and psychosis, less attention has been paid to the much more common problem of cannabis addiction. Certain cognitive changes have also been attributed to cannabis use, although their causality and longevity are fiercely debated. Identifying why some individuals are more vulnerable than others to the adverse effects of cannabis is now of paramount importance to public health. Here, we review the current state of knowledge about such vulnerability factors, the variations in types of cannabis, and the relationship between these and cognition and addiction.This work was supported by grants from the US National Institutes of Health to L.H.P. (AA020404, AA006420, AA022249 and AA017447) and by grants from the UK Medical Research Council to H.V.C. and C.J.A.M. (G0800268; MR/K015524/1)
Cache la Poudre River near Fort Collins, Colorado, flood management alternatives: relocations and levees
Submitted to the Water Resources Planning Fellowship Steering Committee, Colorado State University, in fulfillment of requirements for NR 795 Special Study in Planning.August 1975.Includes bibliographical references
Psychotherapieforschung
These guidelines address the diagnosis and management of atherosclerotic, aneurysmal, and thromboembolic peripheral arterial diseases (PADs). The clinical manifestations of PAD are a major cause of acute and chronic illness, are associated with decrements in functional capacity and quality of life, cause limb amputation, and increase the risk of death. Whereas the term âperipheral arterial diseaseâ encompasses a large series of disorders that affect arterial beds exclusive of the coronary arteries, this writing committee chose to limit the scope of the work of this document to include the disorders of the abdominal aorta, renal and mesenteric arteries, and lower extremity arteries. The purposes of the full guidelines are to (a) aid in the recognition, diagnosis, and treatment of PAD of the aorta and lower extremities, addressing its prevalence, impact on quality of life, cardiovascular ischemic risk, and risk of critical limb ischemia (CLI); (b) aid in the recognition, diagnosis, and treatment of renal and visceral arterial diseases; and (c) improve the detection and treatment of abdominal and branch artery aneurysms. Clinical management guidelines for other arterial beds (e.g., the thoracic aorta, carotid and vertebral arteries, and upper-extremity arteries) have been excluded from the current guidelines to focus on the infradiaphragmatic arterial system and in recognition of the robust evidence base that exists for the aortic, visceral, and lower extremity arteries