5 research outputs found

    α2-chimaerin regulates a key axon guidance transition during development of the oculomotor projection

    Get PDF
    The ocular motor system consists of three nerves which innervate six muscles to control eye movements. In humans, defective development of this system leads to eye movement disorders, such as Duane Retraction Syndrome, which can result from mutations in the α2-chimaerin signaling molecule. We have used the zebrafish to model the role of α2-chimaerin during development of the ocular motor system. We first mapped ocular motor spatiotemporal development, which occurs between 24 and 72 h postfertilization (hpf), with the oculomotor nerve following an invariant sequence of growth and branching to its muscle targets. We identified 52 hpf as a key axon guidance “transition,” when oculomotor axons reach the orbit and select their muscle targets. Live imaging and quantitation showed that, at 52 hpf, axons undergo a switch in behavior, with striking changes in the dynamics of filopodia. We tested the role of α2-chimaerin in this guidance process and found that axons expressing gain-of-function α2-chimaerin isoforms failed to undergo the 52 hpf transition in filopodial dynamics, leading to axon stalling. α2-chimaerin loss of function led to ecotopic and misguided branching and hypoplasia of oculomotor axons; embryos had defective eye movements as measured by the optokinetic reflex. Manipulation of chimaerin signaling in oculomotor neurons in vitro led to changes in microtubule stability. These findings demonstrate that a correct level of α2-chimaerin signaling is required for key oculomotor axon guidance decisions, and provide a zebrafish model for Duane Retraction Syndrome

    Four and a half LIM protein 1C (FHL1C)

    Get PDF
    Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G(0)/G(1) phase. Furthermore, low expression of K(v1.5), a voltage-gated potassium channel known to alter myoblast proliferation during the G(1) phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between K(v1.5) and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and K(v1.5) within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of K(v1.5) with FHL1C in Xenopus laevis oocytes markedly reduced K(+) currents when compared to oocytes expressing K(v1.5) only. We here present the first evidence on a biological relevance of FHL1C

    Four and a Half LIM Protein 1C (FHL1C): A Binding Partner for Voltage-Gated Potassium Channel Kv1.5

    Get PDF
    Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G0/G1 phase. Furthermore, low expression of Kv1.5, a voltage-gated potassium channel known to alter myoblast proliferation during the G1 phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between Kv1.5 and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and Kv1.5 within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of Kv1.5 with FHL1C in Xenopus laevis oocytes markedly reduced K+ currents when compared to oocytes expressing Kv1.5 only. We here present the first evidence on a biological relevance of FHL1C

    In vivo and in vitro knockdown approaches in the avian embryo as a means to study semaphorin signaling

    No full text
    A combination of both in vivo and in vitro techniques is invaluable for studying semaphorin signaling in the avian central nervous system. Here we describe how both types of approaches can be used to compliment each other in order to unravel the role that semaphorins play during embryonic development and elucidate the functional consequences of semaphorin knockdown using RNA interference vectors. We describe and discuss specifically the use of in ovo electroporation and primary oculomotor neuron culture to identify the role of semaphorins in oculomotor neuron migration and assess functional consequences of semaphorin disruption in this system
    corecore