86 research outputs found

    Torsion as electromagnetism and spin

    Full text link
    We show that it is possible to formulate the classical Einstein-Maxwell-Dirac theory of spinors interacting with the gravitational and electromagnetic fields as the Einstein-Cartan-Kibble-Sciama theory with the Ricci scalar of the traceless torsion, describing gravity, and the torsion trace acting as the electromagnetic potential.Comment: 6 pages; published versio

    Cosmology with torsion: An alternative to cosmic inflation

    Get PDF
    We propose a simple scenario which explains why our Universe appears spatially flat, homogeneous and isotropic. We use the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity which naturally extends general relativity to include the spin of matter. The torsion of spacetime generates gravitational repulsion in the early Universe filled with quarks and leptons, preventing the cosmological singularity: the Universe expands from a state of minimum but finite radius. We show that the dynamics of the closed Universe immediately after this state naturally solves the flatness and horizon problems in cosmology because of an extremely small and negative torsion density parameter, ΩS1069\Omega_S \approx -10^{-69}. Thus the ECKS gravity provides a compelling alternative to speculative mechanisms of standard cosmic inflation. This scenario also suggests that the contraction of our Universe preceding the bounce at the minimum radius may correspond to the dynamics of matter inside a collapsing black hole existing in another universe, which could explain the origin of the Big Bang.Comment: 8 pages; published versio

    Variational formulation of Eisenhart's unified theory

    Full text link
    Eisenhart's classical unified field theory is based on a non-Riemannian affine connection related to the covariant derivative of the electromagnetic field tensor. The sourceless field equations of this theory arise from vanishing of the torsion trace and the symmetrized Ricci tensor. We formulate Eisenhart's theory from the metric-affine variational principle. In this formulation, a Lagrange multiplier constraining the torsion becomes the source for the Maxwell equations.Comment: 7 pages; published versio

    Propagating torsion in the Einstein frame

    Full text link
    The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.Comment: 10 pages; published versio

    The cosmic snap parameter in f(R) gravity

    Get PDF
    We derive the expression for the snap parameter in f(R) gravity. We use the Palatini variational principle to obtain the field equations and regard the Einstein conformal frame as physical. We predict the present-day value of the snap parameter for the particular case f(R)=R-const/R, which is the simplest f(R) model explaining the current acceleration of the universe.Comment: 9 pages; published versio

    Gravitation, electromagnetism and cosmological constant in purely affine gravity

    Full text link
    The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, that has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the metric Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric tensor is not well-defined. This feature indicates that, for the Ferraris-Kijowski model to be physical, there must exist a background field that depends on the Ricci tensor. The simplest possibility, supported by recent astronomical observations, is the cosmological constant, generated in the purely affine formulation of gravity by the Eddington Lagrangian. In this paper we combine the electromagnetic field and the cosmological constant in the purely affine formulation. We show that the sum of the two affine (Eddington and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of the analogous (Λ\LambdaCDM and Einstein-Maxwell) Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid, like the affine Einstein-Born-Infeld formulation, only for weak electromagnetic fields, on the order of the magnetic field in outer space of the Solar System. Therefore the purely affine formulation that combines gravity, electromagnetism and cosmological constant cannot be a simple sum of affine terms corresponding separately to these fields. A quite complicated form of the affine equivalent of the metric Einstein-Maxwell-Λ\Lambda Lagrangian suggests that Nature can be described by a simpler affine Lagrangian, leading to modifications of the Einstein-Maxwell-Λ\LambdaCDM theory for electromagnetic fields that contribute to the spacetime curvature on the same order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio

    The present universe in the Einstein frame, metric-affine R+1/R gravity

    Full text link
    We study the present, flat isotropic universe in 1/R-modified gravity. We use the Palatini (metric-affine) variational principle and the Einstein (metric-compatible connected) conformal frame. We show that the energy density scaling deviates from the usual scaling for nonrelativistic matter, and the largest deviation occurs in the present epoch. We find that the current deceleration parameter derived from the apparent matter density parameter is consistent with observations. There is also a small overlap between the predicted and observed values for the redshift derivative of the deceleration parameter. The predicted redshift of the deceleration-to-acceleration transition agrees with that in the \Lambda-CDM model but it is larger than the value estimated from SNIa observations.Comment: 11 pages; published versio
    corecore