46 research outputs found
The cosmic snap parameter in f(R) gravity
We derive the expression for the snap parameter in f(R) gravity. We use the
Palatini variational principle to obtain the field equations and regard the
Einstein conformal frame as physical. We predict the present-day value of the
snap parameter for the particular case f(R)=R-const/R, which is the simplest
f(R) model explaining the current acceleration of the universe.Comment: 9 pages; published versio
Four-fermion interaction from torsion as dark energy
The observed small, positive cosmological constant may originate from a
four-fermion interaction generated by the spin-torsion coupling in the
Einstein-Cartan-Sciama-Kibble gravity if the fermions are condensing. In
particular, such a condensation occurs for quark fields during the
quark-gluon/hadron phase transition in the early Universe. We study how the
torsion-induced four-fermion interaction is affected by adding two terms to the
Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the
curvature tensor and a spinor-bilinear scalar density which measures the
nonminimal coupling of fermions to torsion.Comment: 6 pages; published versio
Interacting dark energy in gravity
The field equations in gravity derived from the Palatini variational
principle and formulated in the Einstein conformal frame yield a cosmological
term which varies with time. Moreover, they break the conservation of the
energy--momentum tensor for matter, generating the interaction between matter
and dark energy. Unlike phenomenological models of interacting dark energy,
gravity derives such an interaction from a covariant Lagrangian which is
a function of a relativistically invariant quantity (the curvature scalar ).
We derive the expressions for the quantities describing this interaction in
terms of an arbitrary function , and examine how the simplest
phenomenological models of a variable cosmological constant are related to
gravity. Particularly, we show that for a flat,
homogeneous and isotropic, pressureless universe. For the Lagrangian of form
, which is the simplest way of introducing current cosmic acceleration
in gravity, the predicted matter--dark energy interaction rate changes
significantly in time, and its current value is relatively weak (on the order
of 1% of ), in agreement with astronomical observations.Comment: 8 pages; published versio
A novel method for gene-specific enhancement of protein translation by targeting 5’UTRs of selected tumor suppressors
Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors
The present universe in the Einstein frame, metric-affine R+1/R gravity
We study the present, flat isotropic universe in 1/R-modified gravity. We use
the Palatini (metric-affine) variational principle and the Einstein
(metric-compatible connected) conformal frame. We show that the energy density
scaling deviates from the usual scaling for nonrelativistic matter, and the
largest deviation occurs in the present epoch. We find that the current
deceleration parameter derived from the apparent matter density parameter is
consistent with observations. There is also a small overlap between the
predicted and observed values for the redshift derivative of the deceleration
parameter. The predicted redshift of the deceleration-to-acceleration
transition agrees with that in the \Lambda-CDM model but it is larger than the
value estimated from SNIa observations.Comment: 11 pages; published versio
Torsion, an alternative to dark matter?
We confront Einstein-Cartan's theory with the Hubble diagram. An affirmative
answer to the question in the title is compatible with today's supernovae data.Comment: 14 pp, 3 figures. Version 2 matches the version published in Gen.
Rel. Grav., references added. Version 3 corrects a factor 3 in Cartan's
equations to become
Big bounce from spin and torsion
The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general
relativity to account for the intrinsic spin of matter. Spacetime torsion,
generated by spin of Dirac fields, induces gravitational repulsion in fermionic
matter at extremely high densities and prevents the formation of singularities.
Accordingly, the big bang is replaced by a bounce that occurred when the energy
density was on the order of (in
natural units), where is the fermion number density and is
the number of thermal degrees of freedom. If the early Universe contained only
the known standard-model particles (), then the energy density at
the big bounce was about 15 times larger than the Planck energy. The minimum
scale factor of the Universe (at the bounce) was about times smaller
than its present value, giving \approx 50 \mum. If more fermions existed in
the early Universe, then the spin-torsion coupling causes a bounce at a lower
energy and larger scale factor. Recent observations of high-energy photons from
gamma-ray bursts indicate that spacetime may behave classically even at scales
below the Planck length, supporting the classical spin-torsion mechanism of the
big bounce. Such a classical bounce prevents the matter in the contracting
Universe from reaching the conditions at which a quantum bounce could possibly
occur.Comment: 6 pages; published versio
Acceleration of the universe in the Einstein frame of a metric-affine f(R) gravity
We show that inflation and current cosmic acceleration can be generated by a
metric-affine f(R) gravity formulated in the Einstein conformal frame, if the
gravitational Lagrangian L(R) contains both positive and negative powers of the
curvature scalar R. In this frame, we give the equations for the expansion of
the homogeneous and isotropic matter-dominated universe in the case
L(R)=R+{R^3}/{\beta^2}-{\alpha^2}/{3R}, where \alpha and \beta are constants.
We also show that gravitational effects of matter in such a universe at very
late stages of its expansion are weakened by a factor that tends to 3/4, and
the energy density of matter \epsilon scales the same way as in the \Lambda-CDM
model only when \kappa*\epsilon<<\alpha.Comment: 12 pages; published versio
On the nonsymmetric purely affine gravity
We review the vacuum purely affine gravity with the nonsymmetric connection
and metric. We also examine dynamical effects of the second Ricci tensor and
covariant second-rank tensors constructed from the torsion tensor in the
gravitational Lagrangian.Comment: 15 pages; published versio