23 research outputs found

    FT-IR Studies of Cerium Oxide Nanoparticles and Natural Zeolite Materials

    Get PDF
    An emerging topic of our days is nanoscience and nanotechnology successfully applied in the food industry. Characteristics such as size, surface area and morphology can modify the basic properties and the chemical reactivity of the nanomaterials. The breakthrough of innovative materials, processes, and phenomena at the nanoscale, as well as the progress of new experimental and theoretical techniques for research, supply novel opportunities for the expansion of original nanosystems and nanostructured materials. These study examine two types of nanoparticles, namely cerium oxide nanoparticles (CeO2 NP) and natural zeolites. In view of the importance of CeO2 NP in various biological applications, the primary objective of this study is to characterise four samples of CeO2 NP in order to understand the role of the synthesis process in the final product. Nanocrystalline natural zeolites are materials with interesting properties which allows them to be used as adjuvant in many therapies. The characterisation of CeO2 NP and two types of natural zeolites using Fourier Transform Infrared (FT-IR) spectroscopy is described. Therefore, this study examined two types of nanomaterials, namely cerium oxide nanoparticles and zeolites, for further applications on microorganisms and living cells

    Effect of Glycerol, as Cryoprotectant in the Encapsulation and Freeze Drying of Microspheres Containing Probiotic Cells

    Get PDF
    It is reported that probiotics provide several health benefits as they help in maintaining a good balance and composition of intestinal flora, and increase the resistance against invasion of pathogens. Ensuring adequate dosages of probiotics at the time of consumption is a challenge, because several factors during processing and storage affect the viability of probiotic organisms. Major emphasis has been given to protect the microorganisms with the help of encapsulation technique, by addition of different protectants. In this study, probiotic cells (Bifidobacterium lactis 300B) were entrapped in alginate/pullulan microspheres. In the encapsulation formula glycerol was used as cryoprotectant in the freeze drying process for long time storage. It was observed that the survival of Bifidobacterium lactis 300B when encapsulated without cryoprotectant was higher than the formula with glycerol in the fresh obtained microspheres. The addition of glycerol was in order to reduce the deep freezing and freeze drying damages. In the chosen formulations, glycerol did not proved protection for the entrapped probiotic cells in the freeze drying process, for which the use of glycerol as cryoprotectant for alginate/pullulan Bifidobacterium lactis 300B entrapment is not recommended

    Preliminary Discrimination of Butter Adulteration by ATR-FTIR Spectroscopy

    Get PDF
    The Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)  was applied for the discrimination of butter samples adulterated with solid fraction of palm oil. For FTIR fingerprinting of butter samples, with or without controlled additions of palm oil as adulterant was firstly obtained, using a Shimatsu Prestige 21 Spectrophotometer, including a horizontal diamond ATR accessory with reflection in the MIR region (3873-690) cm-1.The spiked butter samples including 0 level and seven increasing concentrations of palm fats, up to 50% were fingerprinted and the calibration curve was obtained (n=19). In parallel, the validation was realized using different set of spiked butter samples ranging 1-44.4 % of palm fat (n=7). Finally, an independent set of commercial samples was analized (n=14).Partial least squares (PLS) model was used for statistical data processing in accordance with standard method. The value of the correlation coefficient (R2= 0.977) between actual and predicted values was statistically significant (p<0.001), considering the superposition of  "actual vs predicted†curves. This combined FTIR-PLS evaluation revealed that 3 out of  samples of butter were suspected of adulteration with palm oil, presented values 14 ranging 4-12%.In conclusion, ATR-FTIR methodology may offer an rapid evaluation of  butter samples authenticity. The low value for detection limit (3%palm oil in butter) and the low limit of quantification (9.8% palm oil in butter) confirms that ATR-FTIR spectroscopy  is a sensitive method to identify the adulteration of butter with  palm oil.  Â

    Antioxidant Compounds Recovered from Food Wastes

    Get PDF
    The increase awareness of nowadays consumers regarding the food they purchase and consume and the health has led to an increase demand of foods containing biologically active compounds, namely antioxidants, which can help the body to fight against oxidative stress. As a consequence finding, new or nonconventional sources of antioxidants are a priority for food and also pharmaceutical industries. Wastes from fruits and vegetable processing are shown to contained valuable molecules (antioxidants, dietary fibers, proteins, natural colorants, aroma compounds, etc.) which can be extracted, purified and valorized in value-added products. The present chapter is underlying the great potential of food wastes to be exploited as sources of antioxidants based on the scientific evidences regarding the possibilities of extraction and purification, health benefits and envisaged applications of antioxidants recovered from these wastes

    Valuable Food Molecules with Potential Benefits for Human Health

    Get PDF
    The rapid development in the food supply chain has led to increased interest for quality in the food sector. In the last two decades, the human health and food safety have become essential. Health problems are highly related to diet and nutritional habits. The connection between nutrition and the development of various health problems is even more noticeable when close attention is given to every age group. Regarding the chemical composition of foods, a large number of bioactive compounds present in plants, fruits, vegetables, dairy products, meat, and fish are currently known. Bioactive compounds from food play an important role in prevention of illnesses. Covering essential aspects of health benefits of foods, the present chapter underlies without being exhaustive, the potential of valuable compounds such as soy isoflavones, phytochemicals, polysaccharides, probiotics, prebiotics, lipids, and marine proteins to be used as an effective prevention strategy for developing various human cancers, cardiovascular diseases, diabetes, and metabolic disorders

    Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste

    No full text
    The fruits and vegetables processing industry is one of the most relevant food by-products, displaying limited commercial exploitation entailing economic and environmental problems. However, these by-products present a considerable amount of dietary fiber and prebiotics with important biological activities, such as gut microbiota modulation, lowering the glycemic load and replacing some unhealthy ingredients with an impact on food texture. Therefore, the international scientific community has considered incorporating their extracts or powders to preserve or fortify food products an area of interest, mainly because nowadays consumers demand the production of safer and health-promoting foods. In the present review, literature, mainly from the last 5 years, is critically analyzed and presented. A particular focus is given to utilizing the extracted dietary fibers in different food products and their impact on their characteristics. Safety issues regarding fruits and vegetables wastes utilization and anti-nutritional compounds impact were also discussed

    Biodetoxification and Protective Properties of Probiotics

    No full text
    Probiotic consumption is recognized as being generally safe and correlates with multiple and valuable health benefits. However, the mechanism by which it helps detoxify the body and its anti-carcinogenic and antimutagenic potential is less discussed. A widely known fact is that globalization and mass food production/cultivation make it impossible to keep all possible risks under control. Scientists associate the multitude of diseases in the days when we live with these risks that threaten the population’s safety in terms of food. This review aims to explore whether the use of probiotics may be a safe, economically viable, and versatile tool in biodetoxification despite the numerous risks associated with food and the limited possibility to evaluate the contaminants. Based on scientific data, this paper focuses on the aspects mentioned above and demonstrates the probiotics’ possible risks, as well as their anti-carcinogenic and antimutagenic potential. After reviewing the probiotic capacity to react with pathogens, fungi infection, mycotoxins, acrylamide toxicity, benzopyrene, and heavy metals, we can conclude that the specific probiotic strain and probiotic combinations bring significant health outcomes. Furthermore, the biodetoxification maximization process can be performed using probiotic-bioactive compound association

    A Comprehensive Review of <i>Moringa oleifera</i> Bioactive Compounds—Cytotoxicity Evaluation and Their Encapsulation

    No full text
    Moringa oleifera Lam. has gained a lot of attention due to its potential use as a functional food not only for human health but also for animal health. Its bioactive molecules include carbohydrates, phenolic compounds, carotenoids, fatty acids, essential amino acids, and functional peptides. Despite significant efforts to isolate and characterize bioactive metabolites with health functions, few effective metabolites are accessible. The current review aims to describe the main processes for extracting and encapsulating bioactive compounds from Moringa oleifera for potential impact on food science and public health. Researchers have shown that different extraction techniques significantly impact the Moringa polysaccharides’ molecular structure and biological activity. Encapsulation has been proposed to reduce oxidative stability and entrap active agents within a carrier material to deliver bioactive molecules into foods. Currently, polysaccharides and proteins, followed by lipids, are used for material encapsulation. Recent techniques include spray drying, cross-linking gelation, freeze-drying, nanoencapsulation, electrospinning, and electrospraying. Moreover, these encapsulations can overlap concerns regarding the Moringa oleifera compounds’ cytotoxicity. Future studies should prioritize the effect of new encapsulation materials on Moringa extract and develop new techniques that consider both encapsulation cost and efficiency

    Antimicrobial Efficiency of Edible Films in Food Industry

    No full text
    In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf life and reduce the risk of pathogen growth. In the future, eco-friendly antimicrobial packaging films are promising food packaging materials because its biodegradability provides sustainable development for a modern community
    corecore