3,421 research outputs found

    Measurement of the Current-Phase Relation in Josephson Junctions Rhombi Chains

    Full text link
    We present low temperature transport measurements in one dimensional Josephson junctions rhombi chains. We have measured the current phase relation of a chain of 8 rhombi. The junctions are either in the classical phase regime with the Josephson energy much larger than the charging energy, EJ≫ECE_{J}\gg E_{C}, or in the quantum phase regime where EJ/EC≈2E_{J}/E_{C}\approx 2. In the strong Josephson coupling regime (EJ≫EC≫kBTE_{J}\gg E_{C} \gg k_{B}T) we observe a sawtooth-like supercurrent as a function of the phase difference over the chain. The period of the supercurrent oscillations changes abruptly from one flux quantum Φ0\Phi_{0} to half the flux quantum Φ0/2\Phi_{0}/2 as the rhombi are tuned in the vicinity of full frustration. The main observed features can be understood from the complex energy ground state of the chain. For EJ/EC≈2E_{J}/E_{C}\approx 2 we do observe a dramatic suppression and rounding of the switching current dependence which we found to be consistent with the model developed by Matveev et al.(Phys. Rev. Lett. {\bf 89}, 096802(2002)) for long Josephson junctions chains.Comment: to appear in Phys. Rev.

    Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit

    Full text link
    A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum mechanical phase (Aharonov-Casher effect). In superconducting electronics the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multi-junction circuit the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays

    A 2-D Analysis of the Stability of Boundary Layer Flow on Single and Multilayer Compliant Coatings

    Get PDF
      &nbsp

    Free Convection about a Vertical Wavy Surface with Prescribed Surface Heat Flux in a Micropolar Fluid

    Get PDF
      &nbsp
    • …
    corecore