3,421 research outputs found
Measurement of the Current-Phase Relation in Josephson Junctions Rhombi Chains
We present low temperature transport measurements in one dimensional
Josephson junctions rhombi chains. We have measured the current phase relation
of a chain of 8 rhombi. The junctions are either in the classical phase regime
with the Josephson energy much larger than the charging energy, , or in the quantum phase regime where . In the
strong Josephson coupling regime () we observe a
sawtooth-like supercurrent as a function of the phase difference over the
chain. The period of the supercurrent oscillations changes abruptly from one
flux quantum to half the flux quantum as the rhombi are
tuned in the vicinity of full frustration. The main observed features can be
understood from the complex energy ground state of the chain. For
we do observe a dramatic suppression and rounding of the
switching current dependence which we found to be consistent with the model
developed by Matveev et al.(Phys. Rev. Lett. {\bf 89}, 096802(2002)) for long
Josephson junctions chains.Comment: to appear in Phys. Rev.
Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit
A neutral quantum particle with magnetic moment encircling a static electric
charge acquires a quantum mechanical phase (Aharonov-Casher effect). In
superconducting electronics the neutral particle becomes a fluxon that moves
around superconducting islands connected by Josephson junctions. The full
understanding of this effect in systems of many junctions is crucial for the
design of novel quantum circuits. Here we present measurements and quantitative
analysis of fluxon interference patterns in a six Josephson junction chain. In
this multi-junction circuit the fluxon can encircle any combination of charges
on five superconducting islands, resulting in a complex pattern. We compare the
experimental results with predictions of a simplified model that treats fluxons
as independent excitations and with the results of the full diagonalization of
the quantum problem. Our results demonstrate the accuracy of the fluxon
interference description and the quantum coherence of these arrays
A 2-D Analysis of the Stability of Boundary Layer Flow on Single and Multilayer Compliant Coatings
 
Free Convection about a Vertical Wavy Surface with Prescribed Surface Heat Flux in a Micropolar Fluid
 
- …