25 research outputs found

    Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma

    Get PDF
    Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF

    The <i>Drosophila</i> orthologue of progeroid human WRN exonuclease, DmWRNexo, cleaves replication substrates but is inhibited by uracil or abasic sites

    Get PDF
    Werner syndrome (WS) is a rare late-onset premature ageing disease showing many of the phenotypes associated with normal ageing, and provides one of the best models for investigating cellular pathways that lead to normal ageing. WS is caused by mutation of WRN, which encodes a multifunctional DNA replication and repair helicase/exonuclease. To investigate the role of WRN protein’s unique exonuclease domain, we have recently identified DmWRNexo, the fly orthologue of the exonuclease domain of human WRN. Here, we fully characterise DmWRNexo exonuclease activity in vitro, confirming 3′–5′ polarity, demonstrating a requirement for Mg2+, inhibition by ATP, and an ability to degrade both single-stranded DNA and duplex DNA substrates with 3′ or 5′ overhangs, or bubble structures, but with no activity on blunt ended DNA duplexes. We report a novel active site mutation that ablates enzyme activity. Lesional substrates containing uracil are partially cleaved by DmWRNexo, but the enzyme pauses on such substrates and is inhibited by abasic sites. These strong biochemical similarities to human WRN suggest that Drosophila can provide a valuable experimental system for analysing the importance of WRN exonuclease in cell and organismal ageing
    corecore